# Dartmouth College <br> Mathematics 17 

Assignment 1
due Wednesday, January 11

1. Describe all the rational points on $x^{n}+y^{n}=1$ for $n>2$, and justify your answer.
2. Consider the following set $S$ of differentiable real-valued functions:

$$
S=\left\{f \mid f^{\prime \prime}=f\right\}
$$

that is, functions which are solutions to the homogeneous differential equation $y^{\prime \prime}-y=0$.
(a) Show that $S$ is a vector space over $\mathbb{R}$.
(b) Based on our work in class, what should the dimension of $S$ be? Can you think of a calculus reason which makes this plausible?
(c) Find an appropriate number of (independent) functions which lie in $S$, that is a basis for $S$.
(d) Describe $S$ in terms of this basis.
3. We said in class that two conics can intersect in $0,1,2,3$, or 4 points. Find explicit equations for pairs of examples of each type. For example, $x^{2}+y^{2}=1$ and $(x-2)^{2}+y^{2}=1$ intersect in (how many?) points.
4. Carefully write up a proof of Bachet's duplication formula that we considered in class: Consider the elliptic curve $y^{2}=x^{3}+k(k \neq 0)$. Show that if $(a, b)(b \neq 0)$ is a point on the curve, then so is $\left(\frac{a^{4}-8 a k}{4 b^{2}}, \frac{-a^{6}-20 a^{3} k+8 k^{2}}{8 b^{3}}\right)$. This formula obviously makes no sense for $b=0$. What is happening geometrically when $b=0$ ?

