Homework: Week 5

A Let $\vec{F}\binom{x}{y}=\binom{e^{y^{2}}}{2 x y}$ and C be the curve that runs in a straight line from $(0,0)$ to $(0,2)$ and then clockwise along a circular arc to $(2,0)$.

Find the flux of \vec{F} across C.
Hint: computing directly is very, very difficult - try to find a way that involves computing with easier integrals.

B Is the vector field $\vec{F}=\binom{x y^{2} \sqrt{1000+x y}}{x^{2} y \sqrt{1000+x y}}$ conservative on the disc of radius 5 around the origin? Justify your answer.

Find $\int_{C} \vec{F} \cdot d \vec{r}$ where C is the portion of the ellipse $x^{2}+4 y^{2}=1$ with $x \geq 0$ and $y \geq 0$, oriented counter-clockwise.

C If r is the radial function $r=\sqrt{x^{2}+y^{2}}$ show that

$$
\operatorname{curl}\binom{-y f(r)}{x f(r)} \cdot \vec{k}=2 f(r)+r f^{\prime}(r) .
$$

Use this to evaluate

$$
\iint_{D} 2 \sqrt{1+\left(x^{2}+y^{2}\right)^{3 / 2}}+\frac{3}{2} \frac{\left(x^{2}+y^{2}\right)^{3 / 2}}{\sqrt{1+\left(x^{2}+y^{2}\right)^{3 / 2}}} d A
$$

where D is the unit circle centered at the origin.

