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LECTURE OUTLINE
The Joy of Taylor Series

Professor Leibon

Math 15

Oct. 8, 2004
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Gaol

Taylor Approximation: The
Remainder
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nth Order Approximation at a

f(x) ≈

n
∑

k=0

fk(a)

k!
(x − a)k ≡ Pn(x, a)

near a. Notice dk

dxk Pn(x, a)
∣

∣

∣

x=a

= fk(a) for all 0 ≤ k ≤ n.

Ex: Find Pn(x, 0) for sin(x).

3

1

-3

2

0

x

321-1

-2

-1

-3 0-2

LECTURE OUTLINE The Joy of Taylor Series – p.3/12



An Estimate

Theorem: Let en(x) = f(x) − Pn(x, a). If for every
x in [a − b, a + b] we have that |fn+1(x)| ≤ Bn+1,
then

|en(x)| ≤ Bn+1

|x − a|n+1

(n + 1)!
.

Example: Compute sin(1) to with in 0.001 (this is
sin of 1 radian).
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Controlling the Error

Theorem: Show on any interval that en(x) tends to
zero as n tends to infinity for sin(x) with a = 0.

Hence:

sin(x) =
∞

∑

k=0

(−1)kx2k+1

(2k + 1)!
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Taylor Series

For any x (memorize!)

sin(x) =
∞

∑

k=0

(−1)kx2k+1

(2k + 1)!

cos(x) =
∞

∑

k=0

(−1)kx2k

(2k)!

ex =
∞

∑

k=0

xk

k!
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SQUIDOLICIOUS!

Demonstrate (memorize!)

eix = cos(x) + i sin(x).
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Formulas We’ve Used Again and Again and Again

Demonstrate (do not memorize!)

(cos(x))2 − (sin(x))2 = cos(2x)

2 cos(x) sin(x) = sin(2x)
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Euler’s Epitaph

eiπ + 1 = 0

LECTURE OUTLINE The Joy of Taylor Series – p.9/12



Using Taylor Series

Demonstrate

d

dx
sin(x) = cos(x)

∫

sin(x)dx = − cos(x) + C
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Very Very Very Very Very Very Very Very Very
Very Very Very Very Very Very Very Very Very
Very Very Very Very Very Important Example

The following identity really wants to hold
(memorize!)

1

1 − x
=

∞
∑

k=1

xk.

Where is this true? Why?
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