The Flow Lines of a Particular Vector Field

Problem \star. Let

$$
\mathbf{F}(x, y)=\left(x^{2}-y^{2}, 2 * x * y\right) .
$$

It was remarked in class that the flow lines of this vector field are circles tangent to the x-axis with centers on the y-axis. We'll verify this fact here.
a. Show that for any $r>0$ the path

$$
\mathbf{c}(t)=\left(\frac{-4 r^{2} t}{4 r^{2} t^{2}+1}, \frac{2 r}{4 r^{2} t^{2}+1}\right)
$$

is a flow line for \mathbf{F}.
b. Show that the image of $\mathbf{c}(t)$ lies on a circle with center $(0, r)$ and radius r (that is, $\mathbf{c}(t)$ is one of the circles mentioned earlier).
c. Can you describe how the circle in part (b) is traced out as t varies? What happens as $t \rightarrow \pm \infty$?

