More Matrices

Problem 1. Let A be an $m \times n$ matrix. Show that if $A \mathbf{x}=\mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^{n}$ then A is the zero matrix (that is, every entry in A is 0). Hint: What happens if you take $\mathbf{x}=\mathbf{e}_{i}$?

Problem 2. Let

$$
B=\left(\begin{array}{ll}
a & b \\
b & c
\end{array}\right)
$$

be a symmetric 2×2 matrix with $a \neq 0$. As in the text, define the associated quadratic form by

$$
\begin{align*}
Q(x, y) & =\left(\begin{array}{ll}
x & y
\end{array}\right) B\binom{x}{y} \tag{1}\\
& =a x^{2}+b x y+c y^{2} \tag{2}\\
& =a\left(\left(x+\frac{b}{a} y\right)^{2}+\left(\frac{a c-b^{2}}{a^{2}}\right) y^{2}\right) \tag{3}
\end{align*}
$$

If $a c-b^{2}<0$ show that this form is indefinite; that is, show that Q takes on both positive and negative values. In fact, show that there are arbitrarily small points where Q is positive and arbitrarily small points where Q is negative. Hint: Try to find small points that make one of the two terms in (3) vanish.

Problem 3. Use Problem 2 and the Second Order Taylor Approximation to show that if $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is of class C^{3}, \mathbf{x}_{0} is a critical point of f and the Hessian $\operatorname{Hf}\left(\mathbf{x}_{0}\right)$ is indefinite, then f has a saddle point at \mathbf{x}_{0}. That is, show that under these hypotheses there are points \mathbf{x} arbitrarily close to \mathbf{x}_{0} for which $f(\mathbf{x})>f\left(\mathbf{x}_{0}\right)$ and points \mathbf{x} arbitrarily close to \mathbf{x}_{0} for which $f(\mathbf{x})<f\left(\mathbf{x}_{0}\right)$.

