More Matrices

Problem 1. Let A be an $m \times n$ matrix. Show that if $A\mathbf{x} = \mathbf{0}$ for every $\mathbf{x} \in \mathbb{R}^n$ then A is the zero matrix (that is, every entry in A is 0). *Hint:* What happens if you take $\mathbf{x} = \mathbf{e}_i$?

Problem 2. Let

$$B = \left(\begin{array}{cc} a & b \\ b & c \end{array}\right)$$

be a symmetric 2×2 matrix with $a \neq 0$. As in the text, define the associated quadratic form by

$$Q(x,y) = \begin{pmatrix} x & y \end{pmatrix} B \begin{pmatrix} x \\ y \end{pmatrix}$$
(1)

$$= ax^2 + bxy + cy^2 \tag{2}$$

$$= a\left(\left(x+\frac{b}{a}y\right)^2 + \left(\frac{ac-b^2}{a^2}\right)y^2\right).$$
(3)

If $ac - b^2 < 0$ show that this form is *indefinite*; that is, show that Q takes on both positive and negative values. In fact, show that there are arbitrarily small points where Q is positive and arbitrarily small points where Q is negative. *Hint:* Try to find small points that make one of the two terms in (3) vanish.

Problem 3. Use Problem 2 and the Second Order Taylor Approximation to show that if $f : \mathbb{R}^2 \to \mathbb{R}$ is of class C^3 , \mathbf{x}_0 is a critical point of f and the Hessian $Hf(\mathbf{x}_0)$ is indefinite, then f has a saddle point at \mathbf{x}_0 . That is, show that under these hypotheses there are points \mathbf{x} arbitrarily close to \mathbf{x}_0 for which $f(\mathbf{x}) > f(\mathbf{x}_0)$ and points \mathbf{x} arbitrarily close to \mathbf{x}_0 for which $f(\mathbf{x}) < f(\mathbf{x}_0)$.