Problem 19, Part 2

Problem 19b. Show that the function

$$
v(x, y)=3 x^{2} y-y^{3}
$$

is harmonic and satisfies the equations

$$
\frac{\partial u}{\partial x}=\frac{\partial v}{\partial y} \text { and } \frac{\partial u}{\partial y}=-\frac{\partial v}{\partial x}
$$

These equations are known as the Cauchy-Riemann equations. Show also that for any pair of C^{2} functions $u(x, y)$ and $v(x, y)$ satisfying the Cauchy-Riemann equations, both u and v are harmonic.

A pair of functions satisfying the Cauchy-Riemann equations are called harmonic conjugates. Such pairs of functions are very important in complex analysis, the subject concerned with the calculus of complex valued functions of a complex variable. An interesting fact regarding harmonic functions is the following: any pair of C^{1} functions satisfying the Cauchy-Riemann equations must in fact be C^{k} for any k. That is, once differentiable functions satisfying the Cauchy-Riemann equations are actually infinitely differentiable!

