Two Problems

Problem 1. Let $f: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$ be the linear function defined by the matrix

$$
A=\left(\begin{array}{ccc}
1 & 13 & 0 \\
3 & 6 & 9
\end{array}\right)
$$

Find the coordinate functions of f; that is, find functions $f_{1}(x, y, z)$ and $f_{2}(x, y, z)$ so that

$$
f(x, y, z)=\left(f_{1}(x, y, z), f_{2}(x, y, z)\right)
$$

Problem 2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be the linear function defined by the $m \times n$ matrix A. Using the definition, show that f is differentiable and that $\mathbf{D} f(\mathbf{x})=A$ for all $\mathbf{x} \in \mathbb{R}^{n}$. (It might be useful to do this for the function of Problem 1 first).

