
Some Examples of Limits

While the concept of limits may seem reasonable, the technical ε−δ definition
can be confusing until one has some experience with it. In order to gain some
experience with this somewhat cumbersome definition we’ll carefully work out
some examples. We begin by restating the definition of a limit for convenience.

Definition 1. Let U ⊂ Rn be an open set and let f : U → Rm be a function
with domain U . Let x0 be a vector in U or on the boundary of U . Let b ∈ Rm.
We say that the limit of f as x approaches x0 is b, written

lim
x→x0

f(x) = b,

provided that for every ε > 0 there is a δ > 0 so that ||f(x)− b|| < ε whenever
0 < ||x− x0|| < δ and x ∈ U .

Remarks.

• One should think of ε and δ as being small. In particular, the phrase ”for
every ε > 0” should be thought of as saying ”for every ε > 0, no matter
how small”. With this in mind, the definition is a precise way of saying
the following. As long as x is close enough to x0 (but not equal to it), it
is possible to make f(x) as close to b as we want.

• We mentioned this above, but when we take limits it is important that we
never evaluate the function at the point x0 we are limiting to. It is the
behavior of f around x0 that we’re interested in. For now we really don’t
care what actually happens at x0. This remark is especially important
(or maybe obvious) when the limit point x0 is not in the domain of f , for
then f(x0) doesn’t actually mean anything!

• When using the ε − δ definition, δ almost always will depend on ε. In
fact, most proofs of the existence of limits using the ε− δ definition run as
follows. You start off by saying ”Let ε > 0”. That is, we are picking any
small number. We must produce a δ that ”works” for this particular ε. By
this we mean that we must produce a δ so that if we have 0 < ||x−x0|| < δ
then ||f(x) − b|| < ε. In general, we will actually get a formula for δ in
terms of ε. So, if someone came to you and said ”Alright smartypants, how
can you make f(x) and b be within 10−50 of each other?” you could say
”Well, according to my formula, any time we have 0 < ||x−x0|| < 10−100

we’ll have ||f(x)− b|| < 10−50. And don’t call me smartypants.”
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• Finally, what’s the point of having U open and x0 being either in U or on
the boundary of U? The point is that we want to be able to let x get close
to x0 and then see what happens to f(x). But f(x) only makes sense if x
is in the domain of f . So we need to have f defined on some set that has
points that get arbitrarily close to x0. Taking U to be open and x0 in U
or on the boundary of U allows us to get close to x0 with points x where
f(x) is actually defined.

Now, on to the examples.

Example. Find

lim
(x,y)→(0,0)

(x− y)3

x2 + y2
.

Solution. Before we can even begin to attempt to verify the ε − δ definition
we need to know what the value of the limit is. We’ll make an educated guess
at the value and then check that we’re right by rigorously using the definition.

For any (x, y) 6= (0, 0) we have

(x− y)3

x2 + y2
= (x− y)

x2 − 2xy + y2

x2 + y2
.

The fraction on the right looks ominously familiar to one that we encountered
in class. It seems we should be able to use the same reasoning to show that it’s
bounded by 2. But the quantity (x− y) certainly goes to zero as (x, y) does, so
we guess that the overall limit is probably 0.

Now we rigorously check it. First of all we have∣∣∣∣x2 − 2xy + y2

x2 + y2

∣∣∣∣ ≤ x2 + y2 + 2|xy|
x2 + y2

≤ 2(x2 + y2)
x2 + y2

= 2.

Here we have used the result 2|xy| ≤ x2 + y2 which we deduced in class. It
follows that∣∣∣∣ (x− y)3

x2 + y2

∣∣∣∣ =
∣∣∣∣(x− y)

x2 − 2xy + y2

x2 + y2

∣∣∣∣ ≤ 2|x− y| ≤ 2(|x|+ |y|).

Now for the ε − δ stuff. Let ε > 0 (I warned you we’d be saying that). Let
δ = ε/4 (there’s the formula for the needed δ in terms of the given ε). Then if

0 < ||(x, y)|| < δ

we have

2(|x|+ |y|) ≤ 2(
√

x2 + y2 +
√

x2 + y2) = 4||(x, y)|| < 4δ = ε.

That is ∣∣∣∣ (x− y)3

(x2 + y2)

∣∣∣∣ < ε
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whenever 0 < ||(x, y)|| < δ. So, for any given ε > 0 we can find the δ needed to
make the implication in the definition of limit true. We conclude that

lim
(x,y)→(0,0)

(x− y)3

x2 + y2
= 0.

Example. Find

lim
(x,y)→(0,0)

x2y√
2x2 + 3y2

.

Solution. Again, we need some idea of what the limit is before we can actually
prove anything. This time we use the inequalities∣∣∣∣∣ x2y√

2x2 + 3y2

∣∣∣∣∣ ≤ |x| |xy|
√

2
√

x2 + y2
≤

√
x2 + y2

(1/2)(x2 + y2)
√

2
√

x2 + y2
=

(x2 + y2)3/2

23/2
.

It should be clear now that as (x, y) → (0, 0) our function tends to zero as well.
So we try to prove that the limit is 0.

Let ε > 0. Then set δ = 21/2ε1/3. If

0 < ||(x, y)|| < δ

then ∣∣∣∣∣ x2y√
2x2 + 3y2

∣∣∣∣∣ ≤ (x2 + y2)3/2

23/2
=
||(x, y)||3

23/2
<

δ3

23/2
= ε.

Hence, we have shown that

lim
(x,y)→(0,0)

x2y√
2x2 + 3y2

= 0.

As we can see, the general strategy for dealing with limits when (x, y) →
(0, 0) is to somehow compare the function f to ||(x, y)||. This is often the hardest
part of finding these kinds of limits, and once it’s done the ε− δ part is usually
straightforward.

Now let’s look at a few more complicated examples.

Example. Find

lim
(x,y)→(0,0)

exy − 1
y

.
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Solution. The key here is recognizing a familiar limit from single variable
calculus hiding in this problem. We begin by writing

exy − 1
y

= x
exy − 1

xy

which is valid provided x 6= 0. As (x, y) → (0, 0) we certainly have xy → 0. So
we expect the fraction on the right to approach

lim
h→0

eh − 1
h

.

This is just the value of the derivative of g(x) = ex at x = 0. Since g′(x) = ex,
the limit above is just e0 = 1. So we expect to have

exy − 1
y

= x
exy − 1

xy
→ 0 · 1 = 0

as (x, y) → (0, 0). We now check this using the ε− δ definition of limits.
Let ε > 0. We begin by choosing δ1 > 0 so small that∣∣∣∣eh − 1

h
− 1

∣∣∣∣ < 1 (1)

for 0 < |h| < δ, using the definition of the limit

lim
h→0

eh − 1
h

= 1.

We now set δ = min{
√

δ1, ε/2}. Then for

0 < ||(x, y)|| < δ

we have
|x| ≤

√
x2 + y2 < δ ≤ ε/2

and
|xy| ≤ 1

2
(x2 + y2) < δ2 ≤ δ1.

If we take h = xy above, then equation (1) holds and so∣∣∣∣exy − 1
xy

∣∣∣∣ < 2.

Putting this all together gives∣∣∣∣exy − 1
y

∣∣∣∣ = |x|
∣∣∣∣exy − 1

xy

∣∣∣∣ < 2
ε

2
= ε

provided
0 < ||(x, y)|| < δ.
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Once again, we see that the definition of the limit is satisfied and we conclude
that

lim
(x,y)→(0,0)

exy − 1
y

= 0.

(Remark: technically we cheated just a little. Everything we did above is valid
provided x 6= 0. What happens if x = 0? In this case

exy − 1
y

= 0.

Hence, we certainly have ∣∣∣∣exy − 1
y

∣∣∣∣ < ε

for points with x = 0 as well. )

At this point you may feel a little ripped off. After all, I said that we should
be able to get a formula for δ in terms of ε. But the δ given above depends on
ε and on the quantity δ1. Haven’t I cheated you? The answer is no...sort of. I
invoked the definition of the limit to produce δ1, and if we really wanted δ1 in
terms of ε we could appeal to a single variable calculus text and find a proof
of the limit we used above. So, if we wanted to go through this extra step, we
could get δ1, and hence δ, in terms of ε alone.

Once we’ve established some results about continuity, some ε− δ proofs can
be simplified a bit. As in the example above, this is at the expense of not getting
an explicit formula for δ in terms of ε.

Example. Find

lim
(x,y)→(0,0)

cos(xy)− 1
x2y2

.

Solution. Since xy → 0 as (x, y) → (0, 0), in order to attempt to figure out
the value of this limit we need to first find

lim
h→0

cos(h)− 1
h2

.

This is not a derivative as before, but can be calculated using L’Hopital’s rule
since it is of the form 0/0. We get

lim
h→0

cos(h)− 1
h2

= lim
h→0

− sin(h)
2h

= −1
2

from the (now familiar) fact that sin(α)/α → 1 as α → 0. So we guess that the
value of the limit we are really interested in is −1/2. Now we check it using ε’s
and δ’s.
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Let ε > 0. As before, we first choose δ1 > 0 so that∣∣∣∣cos(h)− 1
h2

−
(
−1

2

)∣∣∣∣ < ε

whenever 0 < |h| < δ1. Since f(x, y) = xy is continuous everywhere

lim
(x,y)→(0,0)

f(x, y) = f(0, 0) = 0.

Hence, we can find δ > 0 so that for 0 < ||(x, y)|| < δ we have

0 < |xy| < δ1.

(i.e. take ε = δ1 in the ε − δ definition of lim(x,y)→(0,0) f(x, y) = f(0, 0) = 0).
Then, any time we have 0 < ||(x, y)|| < δ we also have 0 < |xy| < δ1 so that∣∣∣∣cos(xy)− 1

(xy)2
−

(
−1

2

)∣∣∣∣ < ε

by above. We conclude that

lim
(x,y)→(0,0)

cos(xy)− 1
x2y2

= −1
2
.

Okay, so now we’ve been able to show that a few limits exist and computed
their values carefully using ε’s and δ’s. What about limits that fail to exist? For
us, the typical way to detect this is to show that as we approach our limiting
point from different directions we get different values. Let’s look at an example
of this.

Example. Show that

lim
(x,y)→(0,0)

cos x− 1− (x2/2)
x4 + y4

fails to exist.

Solution. Suppose we first approach (0, 0) along the y-axis, that is, through
points of the form (y, 0), y 6= 0. Then

cos x− 1− (x2/2)
x4 + y4

= 0

so that if the limit did exist, it would have to be 0. But now suppose that we
approach (0, 0) along y = x, that is, through points of the form (x, x), x 6= 0.
Then

cos x− 1− (x2/2)
x4 + y4

=
cosx− 1− (x2/2)

2x4
.

6



As we approach (0, 0) on this line we are thus forced to consider

lim
x→0

cosx− 1− (x2/2)
2x4

which can be computed using L’Hopital’s rule several times. Indeed,

lim
x→0

cosx− 1− (x2/2)
2x4

= lim
x→0

− sinx− x

8x3

= lim
x→0

− cos x− 1
24x2

= lim
x→0

sinx

48x

=
1
48

.

This means that if the limit exists, then it must equal 1/48. Since 1/48 6= 0, we
conclude that the limit as we approach (0, 0) does not exist in this case.

To justify the procedure we just used we shall prove the following

Theorem 1. Let U ⊂ Rn be open and let f : U → Rm be a function. Let x0 be
in U or on the boundary of U and let b ∈ Rm. Suppose that

lim
x→x0

f(x) = b.

Suppose further that we are given a continuous path g : (a, b) → Rn so that
g(0) = x0 and that

lim
t→0

f(g(t)) = c

for some c ∈ Rm. Then b = c.

The interpretation of this result is more important than its proof. The
upshot is that if the function has a limit at a point and if when we approach
that point on a curve the values of the function approach some limit as well,
then these limits must be the same. Therefore, if we approach a point through
two different curves and get two different values it must be the case that the
limit in general at that point does not exist.

The proof is provided for completeness, but I don’t expect you to read it
unless you really want to. It’s another pile of ε’s and δ’s.

Proof. We will show that for every ε > 0 we have

||b− c|| < ε.

This implies that b = c.
So, let ε > 0. Using the definition of the limit, choose δ1 > 0 so that

||f(x)− b|| < ε

2
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whenever 0 < ||x−x0|| < δ1. Next, using continuity of g, choose δ2 > 0 so that

||g(t)− x0|| < δ1

whenever 0 < |t| < δ2. Combining the prior inequalities gives

||f(g(t))− b|| < ε

2

whenever 0 < |t| < δ2. Finally, using the definition of the limit again, choose
δ3 > 0 so that

||f(g(t))− c|| < ε

2
whenever 0 < |t| < δ3. Let δ = min{δ2, δ3}. Then for any 0 < |t| < δ we have

||b−c|| = ||b−f(g(t))+f(g(t))−c|| ≤ ||b−f(g(t))||+||f(g(t))−c|| < ε

2
+

ε

2
= ε.

This is exactly what we wanted to show, so we’re done.
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