A Familiar Function Revisited

Throughout what follows, we let

$$
T(u, v)=\left(u^{2}-v^{2}, 2 u v\right) .
$$

In a previous assignment we considered T to be a vector field, but now we want to study T as a map.

Problem 1. Determine the action of T on vertical lines as follows. Fix $\alpha \in \mathbb{R}$ and consider the vertical line $u=\alpha$. The points on this line all have the form (α, v). Determine the curve traced out by $T(\alpha, v)$ as v varies. You will need to consider the cases $\alpha=0$ and $\alpha \neq 0$ separately.

Problem 2. Determine the action of T on horizonal lines as follows. Fix $\beta \in \mathbb{R}$ and consider the horizontal line $v=\beta$. The points on this line all have the form (u, β). Determine the curve traced out by $T(u, \beta)$ as u varies. You will need to consider the cases $\beta=0$ and $\beta \neq 0$ separately.

Problem 3. Using the results of the preceeding exercises, find the image of $D^{*}=[0,1] \times[0,1]$ under T.

Let C_{1} and C_{2} be two differentiable curves in \mathbb{R}^{2}, intersecting at the point (α, β). The angle between C_{1} and C_{2} at (α, β) is defined to be the angle between the tangent vectors to C_{1} and C_{2} at the point (α, β).

Problem 4. Fix a point $(\alpha, \beta) \in \mathbb{R}^{2}$. Let C_{1} and C_{2} be two curves in the (u, v) plane that intersect at (α, β). Show that, unless $(\alpha, \beta)=(0,0)$, then T preserves the angles at (α, β) by showing that the angle between the curves C_{1} and C_{2} at the point (α, β) is the same as the angle between the image curves $T\left(C_{1}\right)$ and $T\left(C_{2}\right)$ at the point $T(\alpha, \beta)$. [Suggestion: By writing C_{1} and C_{2} parametrically, use the chain rule to compute the tangent vectors to $T\left(C_{1}\right)$ and $T\left(C_{2}\right)$. Remember that the angle between two vectors is related to their dot product.]

