The Technicalities of Integration

Problem 1. Let $R=[a, b] \times[c, d]$ and let $f: R \rightarrow \mathbb{R}, g: R \rightarrow \mathbb{R}$ be integrable on R. In this exercise we'll work through the proof of the following fact: If k is any constant, then $k f+g$ is integrable on R and

$$
\begin{equation*}
\iint_{R}(k f+g) d A=k \iint_{R} f d A+\iint_{R} g d A . \tag{1}
\end{equation*}
$$

a. Let n be a positive integer. Show that the associated Riemann sums satisfy

$$
S_{n}(k f+g)=k S_{n}(f)+S_{n}(g)
$$

b. Take limits on both sides of the result in part (a) to deduce that

$$
\lim _{n \rightarrow \infty} S_{n}(k f+g)=k \lim _{n \rightarrow \infty} S_{n}(f)+\lim _{n \rightarrow \infty} S_{n}(g)
$$

- c. Conclude that $k f+g$ is integrable on R and that the equality (1) holds.

Problem 2. Let

$$
f(x, y)=\left\{\begin{array}{cc}
1 & x \text { rational } \\
2 y & x \text { irrational. }
\end{array}\right.
$$

Let's prove that this function is not integrable on $[0,1] \times[0,1]$.
Let n be a positive integer. Let

$$
\begin{array}{ccc}
0=x_{0}<x_{1}< & <x_{n-1}<x_{n}=1 \\
0=y_{0}<y_{1}< & \cdots & <y_{n-1}<y_{n}=1
\end{array}
$$

be the associated regular partitions of $[0,1]$. Let $R_{j k}=\left[x_{j}, x_{j+1}\right] \times\left[y_{k}, y_{k+1}\right]$. We will cleverly choose the $\mathbf{c}_{j k} \in R_{j k}$ to force the associated Riemann sums to have different limits.
a. Show that $x_{j}=j / n$ and $y_{k}=k / n$. Conclude that the x_{j} 's and y_{k} 's are all rational.
b. Let $\mathbf{c}_{j k}=\left(x_{j}, y_{k}\right)$. Show that the associated Riemann sum satisfies

$$
S_{n}(f)=1
$$

c. Now take $\mathbf{c}_{j k}^{*}$ as follows. If $k<n / 2$ then let $\mathbf{c}_{j k}^{*}=\left(x_{j}^{*}, y_{k}\right)$ where x_{j}^{*} is an irrational number in $\left[x_{j}, x_{j+1}\right]$ (for example, $x_{j}^{*}=x_{j}+\sqrt{2} / 2 n$ works). If $k \geq 1 / 2$ then let $\mathbf{c}_{j k}^{*}=\left(x_{j}, y_{k}\right)$ Show that the associated Riemann sum is given by

$$
S_{n}^{*}(f)=\sum_{0 \leq k<n / 2} 2 y_{k} \Delta y+\sum_{n / 2 \leq k \leq n-1} \Delta y .
$$

d. Show that

$$
\lim _{n \rightarrow \infty} S_{n}^{*}(f)=\frac{3}{4}
$$

[Hint: Realize $S_{n}^{*}(f)$ as a Riemann sum for a certain single variable function.]
e. Conclude that

$$
\lim _{n \rightarrow \infty} S_{n}(f) \neq \lim _{n \rightarrow \infty} S_{n}^{*}(f)
$$

which shows that f is not integrable.

