Math 13, Winter 2018

Homework set 8, due Wed Feb 28

Please show your work. No credit is given for solutions without justification.

- (1) Let \mathcal{D} be a region in the plane with boundary curve \mathcal{C} (oriented counter-clockwise). For which of the vector fields below (there may be one or more) is $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \operatorname{Area}(\mathcal{D})$?
 - $\begin{array}{ll} (a) & \mathbf{F} = \langle x, 0 \rangle \\ (b) & \mathbf{F} = \langle 0, x \rangle \\ (c) & \mathbf{F} = \langle y, 2x \rangle \\ (d) & \mathbf{F} = \langle \frac{1}{2}x, \frac{1}{2}y \rangle \end{array}$
- (2) Calculate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$ for the vector field

$$\mathbf{F} = \langle y - \frac{y}{x^2 + y^2}, x + \frac{x}{x^2 + y^2} \rangle$$

and the circle \mathcal{C} with radius 5 and center (1, 2).

Hint. Use Green's Theorem.

(3) Let **F** be a vector field in space with curl (**F**) = $\langle x, y, -2z \rangle$. Let C_1 be the parametrized circle $\mathbf{r}(t) = \langle \cos t, \sin t, 1 \rangle$ with $0 \leq t \leq 2\pi$, and C_2 the parametrized circle $\mathbf{r}(t) = \langle \cos t, \sin t, 2 \rangle$ with $0 \leq t \leq 2\pi$, both oriented counter-clockwise when seen from above.

If we know that $\int_{\mathcal{C}_1} \mathbf{F} \cdot d\mathbf{r} = -2\pi$, find the value of $\int_{\mathcal{C}_2} \mathbf{F} \cdot d\mathbf{r}$ using Stokes' Theorem.