Math 13, Winter 2018

Homework set 8, due Wed Feb 28

Please show your work. No credit is given for solutions without justification.
(1) Let \mathcal{D} be a region in the plane with boundary curve \mathcal{C} (oriented counter-clockwise). For which of the vector fields below (there may be one or more) is $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}=\operatorname{Area}(\mathcal{D})$?
(a) $\mathbf{F}=\langle x, 0\rangle$
(b) $\mathbf{F}=\langle 0, x\rangle$
(c) $\mathbf{F}=\langle y, 2 x\rangle$
(d) $\mathbf{F}=\left\langle\frac{1}{2} x, \frac{1}{2} y\right\rangle$
(2) Calculate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ for the vector field

$$
\mathbf{F}=\left\langle y-\frac{y}{x^{2}+y^{2}}, x+\frac{x}{x^{2}+y^{2}}\right\rangle
$$

and the circle \mathcal{C} with radius 5 and center $(1,2)$.
Hint. Use Green's Theorem.
(3) Let \mathbf{F} be a vector field in space with $\operatorname{curl}(\mathbf{F})=\langle x, y,-2 z\rangle$. Let \mathcal{C}_{1} be the parametrized circle $\mathbf{r}(t)=\langle\cos t, \sin t, 1\rangle$ with $0 \leq t \leq 2 \pi$, and \mathcal{C}_{2} the parametrized circle $\mathbf{r}(t)=$ $\langle\cos t, \sin t, 2\rangle$ with $0 \leq t \leq 2 \pi$, both oriented counter-clockwise when seen from above.
If we know that $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=-2 \pi$, find the value of $\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}$ using Stokes' Theorem.

