Math 13, Winter 2018

Homework set 7, due Wed Feb 21

Please show your work. No credit is given for solutions without justification.

- (1) Find the surface area of the part of the cone $z^2 = 2x^2 + 2y^2$ with $0 \le z \le 2$.
- (2) Calculate $\iint_{\mathcal{S}} (xy + e^z) dS$, where the surface S is the triangle with vertices (0, 0, 2), (1, 0, 1), (0, 4, 0).
- (3) Let S be the boundary of the unit cube $0 \le x \le 1, 0 \le y \le 1, 0 \le z \le 1$. Note that S is a closed surface with six faces. The surface S is oriented with outward pointing normals. Calculate the flux of the vector field $\mathbf{F} = \langle x, y, z \rangle$ through S.