Math 13, Winter 2018

Homework set 7, due Wed Feb 21

Please show your work. No credit is given for solutions without justification.
(1) Find the surface area of the part of the cone $z^{2}=2 x^{2}+2 y^{2}$ with $0 \leq z \leq 2$.
(2) Calculate $\iint_{\mathcal{S}}\left(x y+e^{z}\right) d S$, where the surface S is the triangle with vertices $(0,0,2)$, $(1,0,1),(0,4,0)$.
(3) Let S be the boundary of the unit cube $0 \leq x \leq 1,0 \leq y \leq 1,0 \leq z \leq 1$. Note that S is a closed surface with six faces. The surface \mathcal{S} is oriented with outward pointing normals. Calculate the flux of the vector field $\mathbf{F}=\langle x, y, z\rangle$ through \mathcal{S}.

