Math 13, Winter 2018

Homework set 6, due Wed Feb 14

Please show your work. No credit is given for solutions without justification.
(1) Calculate the line integral $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$, for the vector field $\mathbf{F}=\langle x, y, z\rangle$ and the straight line segment \mathcal{C} from $(1,0,1)$ to $(2,2,0)$.
(2) Let $\mathbf{F}=\left\langle 2 x y, 3 y^{2} z+x^{2}, y^{3}+2 z\right\rangle$.
(a) Calculate curl \mathbf{F}.
(b) Is \mathbf{F} conservative? If your answer is "No", explain why not. If your answer is "Yes", find a potential function.
(c) Calculate $\int_{\mathcal{C}} \mathbf{F} \cdot d \mathbf{r}$ if \mathcal{C} is the helix $\mathbf{r}(t)=\langle\cos t, t, \sin t\rangle$ with $0 \leq t \leq 2 \pi$.
(3) Find an equation for the tangent plane to the sphere $x^{2}+y^{2}+z^{2}=9$ at the point $(1,2,2)$.

