Math 13, Winter 2018

Homework set 5, due Wed Feb 7

Please show your work. No credit is given for solutions without justification.
(1) Let $\mathbf{F}=\left\langle x z+y, x, x^{2}\right\rangle$.
(a) Calculate $\operatorname{div} \mathbf{F}$ and $\operatorname{curl} \mathbf{F}$.
(b) Is the vector field \mathbf{F} conservative? If your answer is "No", explain why not. If your answer is "Yes", find a potential function by inspection.
(c) If \mathbf{F} represent a flow, is the vector field incompressible?
(2) Let \mathcal{C} be the piecewise linear path (a triangle) in the $x y$-plane from $(0,0)$ to $(2,0)$ to $(0,3)$ to $(0,0)$. Evaluate the scalar line integral $\int_{\mathcal{C}} x^{2}+y^{2} d s$.
(3) Calculate the arc length of the parametrized curve $\mathbf{r}(t)=\left\langle e^{t}, t \sqrt{2}, e^{-t}\right\rangle$ with $0 \leq t \leq 2$. Hint. When you calculate $\|\mathbf{r}(t)\|$, try to make use of the formula $\sqrt{a^{2}+2 a b+b^{2}}=|a+b|$.

