Math 13, Winter 2018

Pset 1, due Wed Jan 10

Please show your work. No credit is given for solutions without justification.
(1) Calculate the value of the Riemann sum for the integral $\int_{1}^{3} \int_{0}^{2} x^{3} y d y d x$, using a regular partition of the domain of the integral, with $\Delta x=\frac{1}{2}$ and $\Delta y=\frac{1}{2}$. Choose midpoints as sample points of the subrectangles. (See Exercise 15.1.19 for the exact value of the integral.)
You may use a calculator for this problem.
(2) Use a double integral to calculate the volume of the solid region below the plane $z=$ $4-x-y$ and above the rectangle in the $x y$-plane with $0 \leq x \leq 2$ and $0 \leq y \leq 2$.
(3) Evaluate the double integral $\iint_{\mathcal{R}} x \cos (x y) d A$, with $\mathcal{R}=[0, \pi] \times[0,1]$.

