Math 13, Winter 2017

Homework set 9, due Wed Mar 8

Please show your work. No credit is given for solutions without justification.
(1) Use the surface integral in Stokes' theorem to calculate the circulation of the field \mathbf{F} around the curve \mathcal{C} in the indicated direction

$$
\mathbf{F}=x^{2} y^{3} \mathbf{i}+\mathbf{j}+z \mathbf{k}
$$

\mathcal{C} is the boundary of the hemisphere $x^{2}+y^{2}+z^{2}=16, z \geq 0$, counterclockwise when viewed from above.
(2) Use the Divergence theorem to evaluate the surface integral $\iint_{S} F \cdot d \mathcal{S}$ where $F(x, y, z)=$ $(x+y, z, x)$ and \mathcal{S} is the surface of the hemisphere $x^{2}+y^{2}+z^{2}=1$ with $z>0$ and n is the outward normal to \mathcal{S}.
(3) Consider the region \mathcal{R} bounded by the parabolas $y=x^{2}$ and $x=y^{2}$. Let \mathcal{C} be the boundary of \mathcal{R} oriented counterclockwise. Use Green's Theorem to evaluate

$$
\int_{\mathcal{C}}\left(y+e^{\sqrt{x}}\right) d x+\left(2 x+\cos \left(y^{2}\right)\right) d y
$$

