Math 13, Winter 2017

Homework set 9, due Wed Mar 8

Please show your work. No credit is given for solutions without justification.

(1) Use the surface integral in Stokes' theorem to calculate the circulation of the field \mathbf{F} around the curve \mathcal{C} in the indicated direction

$$\mathbf{F} = x^2 y^3 \mathbf{i} + \mathbf{j} + z \mathbf{k}$$

C is the boundary of the hemisphere $x^2 + y^2 + z^2 = 16$, $z \ge 0$, counterclockwise when viewed from above.

- (2) Use the Divergence theorem to evaluate the surface integral $\int \int_S F \cdot d\mathcal{S}$ where F(x, y, z) = (x + y, z, x) and \mathcal{S} is the surface of the hemisphere $x^2 + y^2 + z^2 = 1$ with z > 0 and n is the outward normal to \mathcal{S} .
- (3) Consider the region \mathcal{R} bounded by the parabolas $y = x^2$ and $x = y^2$. Let \mathcal{C} be the boundary of \mathcal{R} oriented counterclockwise. Use Green's Theorem to evaluate

$$\int_{\mathcal{C}} (y + e^{\sqrt{x}}) dx + (2x + \cos(y^2)) dy$$