Math 13, Winter 2017

Homework set 8, due Wed Mar 1

Please show your work. No credit is given for solutions without justification.
(1) Let \mathcal{S} be the part of the surface $z=2 x y$ for pairs (x, y) with

$$
x \geq 1, y \geq 1 \text { and } x+y \leq 4 \Leftrightarrow y \leq 4-x
$$

such that \mathcal{S} is oriented by upward-pointing normal vectors.
For the vector field $\mathbf{F}=\langle-z x, z y, x\rangle$, calculate $\iint_{\mathcal{S}} \mathbf{F} \cdot d S$.

Solution:

Step 1: Finding a parametrization G for \mathcal{S} :

As $z=2 x y=h(x, y)$ is a function of x and y, the domain \mathcal{D} of $h(x, y)$ will also be the domain of our parametrization G. From the above inequalities for x and y we get:

$$
\mathcal{D}=\left\{\begin{array}{l}
1 \leq x \leq 3 \\
1 \leq y \leq 4-x
\end{array} \quad\right. \text { (see below). }
$$

Then $G(x, y)=(x, y, h(x, y))=(x, y, 2 x y)$.

Step 2: Calculating the normal vector $\mathbf{N}(x, y)$:
In general, the normal vector at a point (x, y, z) of a graph $z=h(x, y)$ is
$\mathbf{N}(x, y)=\left(-\frac{\partial h(x, y)}{\partial x},-\frac{\partial h(x, y)}{\partial y}, 1\right)$ (see p. 941 of the book for this formula). In our case we get:

$$
\mathbf{N}(x, y)=(-2 y,-2 x, 1) .
$$

Step 3: Substituting G in \mathbf{F} :

We get $\mathbf{F}(G(x, y))=\left(-2 x^{2} y, 2 x y^{2}, x\right)$.
Step 4: Evaluating the integral $\iint_{\mathcal{S}} \mathbf{F} \cdot d S$:
As $\iint_{\mathcal{S}} \mathbf{F} \cdot d S=\iint_{\mathcal{D}} \mathbf{F}(G(x, y)) \bullet \mathbf{N}(x, y) d A$ we get:

$$
\begin{aligned}
\iint_{\mathcal{S}} \mathbf{F} \cdot d S & =\iint_{\mathcal{D}} 4 x^{2} y^{2}-4 x^{2} y^{2}+x d A=\int_{x=1}^{3} \int_{y=1}^{4-x} x d y d x \\
& =\int_{x=1}^{3} x(4-x-1) d x=\int_{x=1}^{3} 3 x-x^{2} d x \\
& =\frac{3}{2} x^{2}-\left.\frac{x^{3}}{3}\right|_{x=1} ^{3}=\frac{10}{3} .
\end{aligned}
$$

(2) Let \mathcal{D} be the region depicted below, whose boundary $\partial \mathcal{D}$ is the so called sinosoidal curve with parametrization

$$
\mathbf{r}(t)=(\sin (2 t), \sin (t)), \quad 0 \leq t \leq \pi .
$$

Find the area of \mathcal{D}.
Solution: We have seen three ways of calculating the area:

1.) $\operatorname{area}(\mathcal{D})=\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\langle 0, x\rangle$.
2.) $\operatorname{area}(\mathcal{D})=\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\langle-y, 0\rangle$.
3.) $\operatorname{area}(\mathcal{D})=\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}$, where $\mathbf{F}=\left\langle-\frac{y}{2}, \frac{x}{2}\right\rangle$.

Using the first formula for the area, we get:

$$
\mathbf{r}(t)=(\sin (2 t), \sin (t))=(x, y) \text { and } \mathbf{r}^{\prime}(t)=(2 \cos (2 t), \cos (t))
$$

Note that by the trigonometric addition formulas

$$
\sin (2 t)=2 \sin (t) \cos (t) \text { and } \cos (2 t)=\cos ^{2}(t)-\sin ^{2}(t)=2 \cos ^{2}(t)-1 .
$$

With $\mathbf{F}=\langle 0, x\rangle$, we have $\mathbf{F}(\mathbf{r}(t))=\langle 0, \sin (2 t)\rangle$. Hence

$$
\begin{aligned}
\operatorname{area}(\mathcal{D}) & =\int_{t=0}^{\pi} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{t=0}^{\pi}(0, \sin (2 t)) \bullet(2 \cos (2 t), \cos (t)) d t \\
& =\int_{t=0}^{\pi} \sin (2 t) \cdot \cos (t) d t=\int_{t=0}^{\pi}(2 \sin (t) \cdot \cos (t)) \cdot \cos (t) d t \\
& =\int_{t=0}^{\pi} 2 \cos ^{2}(t) \cdot \sin (t) d t=-\left.\frac{2 \cos ^{3}(t)}{3}\right|_{t=0} ^{\pi} \\
& =\frac{2}{3}-\left(-\frac{2}{3}\right)=\frac{4}{3} .
\end{aligned}
$$

If we apply the second formula for $\operatorname{area}(\mathcal{D})$, we get:
With $\mathbf{F}=\langle-y, 0\rangle$, we have $\mathbf{F}(\mathbf{r}(t))=\langle-\sin (t), 0\rangle$. Hence

$$
\begin{aligned}
\operatorname{area}(\mathcal{D}) & =\int_{t=0}^{\pi} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{t=0}^{\pi}(-\sin (t), 0) \bullet(2 \cos (2 t), \cos (t)) d t \\
& =\int_{t=0}^{\pi}-2 \cos (2 t) \cdot \sin (t) d t=\int_{t=0}^{\pi}-2\left(2 \cos ^{2}(t)-1\right) \cdot \sin (t) d t \\
& =\int_{t=0}^{\pi} 2 \sin (t)-4 \cos ^{2}(t) \sin (t) d t=-2 \cos (t)+\left.\frac{4 \cos ^{3}(t)}{3}\right|_{t=0} ^{\pi} \\
& =\left(2-\frac{4}{3}\right)-\left(-2+\frac{4}{3}\right)=\frac{4}{3} .
\end{aligned}
$$

Note that for $\mathbf{F}=\left\langle-\frac{y}{2}, \frac{x}{2}\right\rangle=\frac{1}{2}\langle 0, x\rangle+\frac{1}{2}\langle-y, 0\rangle$, $\operatorname{area}(\mathcal{D})=\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}$ can be calculated by combining the two previous cases.
(3) Let \mathbf{F} be the vector field in the $x y$-plane given by

$$
\mathbf{F}(x, y):=\left\langle-\frac{3 y}{4 x^{2}+y^{2}}, \frac{3 x}{4 x^{2}+y^{2}}\right\rangle .
$$

Let \mathcal{D} be the region depicted below, whose boundary $\partial \mathcal{D}$ consists of the curves \mathcal{C}_{1} and \mathcal{C}_{2}. Here \mathcal{C}_{1} is the ellipse with parametrization

$$
\mathbf{r}(t)=(\cos (t), 2 \sin (t)), \quad 0 \leq t \leq 2 \pi .
$$

\mathcal{C}_{2} is another closed curve, which is oriented, such that \mathcal{D} is to the left of \mathcal{C}_{2}.

(a) Calculate $\operatorname{curl}_{z}(\mathbf{F})$.

Solution:

Using the chain rule, we get:

$$
\operatorname{curl}_{z}(\mathbf{F})=\frac{\partial \mathbf{F}_{2}}{\partial x}-\frac{\partial \mathbf{F}_{1}}{\partial y}=-\frac{3\left(4 x^{2}-y^{2}\right)}{\left(4 x^{2}+y^{2}\right)^{2}}-\left(-\frac{3\left(4 x^{2}-y^{2}\right)}{\left(4 x^{2}+y^{2}\right)^{2}}\right)=0 .
$$

(b) Use the general form of Green's Theorem to find $\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}$.

Solution:

The general form of Green's Theorem is $\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) d A$. As $\operatorname{curl}_{z}(\mathbf{F})=$ 0 it follows that $\iint_{\mathcal{D}} \operatorname{curl}_{z}(\mathbf{F}) d A=0$. With the given orientation of \mathcal{C}_{1} and \mathcal{C}_{2} :
$\int_{\partial \mathcal{D}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}-\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=0$, hence $\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}$.

It is therefore sufficient to calculate $\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}$. We get:

$$
\mathbf{r}(t)=(\cos (t), 2 \sin (t))=(x, y) \text { and } \mathbf{r}^{\prime}(t)=(-\sin (t), 2 \cos (t)) .
$$

With $\mathbf{F}=\left\langle-\frac{3 y}{4 x^{2}+y^{2}}, \frac{3 x}{4 x^{2}+y^{2}}\right\rangle$, we have:

$$
\mathbf{F}(\mathbf{r}(t))=\left\langle-\frac{6 \sin (t)}{4 \cos ^{2}(t)+4 \sin ^{2}(t)},-\frac{3 \cos (t)}{4 \cos ^{2}(t)+4 \sin ^{2}(t)}\right\rangle=\left\langle-\frac{6 \sin (t)}{4},-\frac{3 \cos (t)}{4}\right\rangle .
$$

Hence

$$
\begin{aligned}
\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r} & =\int_{t=0}^{2 \pi} \mathbf{F}(\mathbf{r}(t)) \bullet \mathbf{r}^{\prime}(t) d t \\
& =\int_{t=0}^{2 \pi}\left(-\frac{6 \sin (t)}{4},-\frac{3 \cos (t)}{4}\right) \bullet(-\sin (t), 2 \cos (t)) d t \\
& =\frac{3}{4} \int_{t=0}^{2 \pi} 2\left(\sin ^{2}(t)+\cos ^{2}(t)\right) d t=\frac{3}{2} \int_{t=0}^{2 \pi} 1 d t \\
& =2 \pi \cdot \frac{3}{2}=3 \pi
\end{aligned}
$$

In total we get: $\int_{\mathcal{C}_{2}} \mathbf{F} \cdot d \mathbf{r}=\int_{\mathcal{C}_{1}} \mathbf{F} \cdot d \mathbf{r}=3 \pi$.

