Math 13, Winter 2017

## Homework set 7, due Wed Feb 22

Please show your work. No credit is given for solutions without justification.
(1) Find an equation for the tangent plane of the cone $z=\sqrt{x^{2}+y^{2}}$ at the point $(3,4,5)$.

Solution. First we need to find the normal vector to the cone. In general, the normal vector at a point $(x, y, z)$ of a graph $z=f(x, y)$ is $\mathbf{N}=\left\langle-f_{x},-f_{y}, 1\right\rangle$. (See p. 941 for this formula.) In our case, using the chain rule,

$$
\begin{aligned}
& f_{x}=\frac{\partial f}{\partial x}=2 x \cdot \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}=\frac{x}{\sqrt{x^{2}+y^{2}}} \\
& f_{y}=\frac{\partial f}{\partial y}=2 y \cdot \frac{1}{2}\left(x^{2}+y^{2}\right)^{-1 / 2}=\frac{y}{\sqrt{x^{2}+y^{2}}}
\end{aligned}
$$

At the point $(3,4,5)$ we have $\sqrt{x^{2}+y^{2}}=\sqrt{9+16}=5$, so $f_{x}=\frac{3}{5}$ and $f_{y}=\frac{4}{5}$. The normal vector is $\mathbf{N}=\left\langle-\frac{3}{5},-\frac{4}{5}, 1\right\rangle$.

We may rescale the normal vector: If $\left\langle-\frac{3}{5},-\frac{4}{5}, 1\right\rangle$ is a normal vector, so is $\langle-3,-4,5\rangle$. This rescaling is not necessary, but is a little easier to work with.

If the normal vector is $\mathbf{N}=\langle a, b, c\rangle$ then an equation for the tangent plane is $a x+$ $b y+c z=d$. So we find $-3 x-4 y+5 z=d$ for the tangent plane. To find $d$ we must make sure that the point $(3,4,5)$ is on the tangent plane. With $x=3, y=4, z=5$ we get $d=-3 x-4 y+5 z=-9-16+25=0$, so $d=0$. An equation for the tangent plane is

$$
-3 x-4 y+5 z=0
$$

Remark. There are various equivalent forms of this equation. For example,

$$
z=\frac{3}{5} x+\frac{4}{5} y
$$

is also a correct equation of the tangent plane.
(2) What is the surface area of the part of the cylinder $x^{2}+y^{2}=9$ that is above the $x y$-plane and below the plane $x+z=3$ ?

Solution. Parametrize the cylinder in the standard way using cylindrical coordinates. With $r=3, \theta=u, z=v$ we get $x=3 \cos u, y=3 \sin u, z=v$, or

$$
G(u, v)=(3 \cos u, 3 \sin u, v)
$$

The parameter domain $\mathcal{D}$ is determined by the equations $z \geq 0$ ("above the $x y$-plane") and $z \leq 3-x$ ("below the plane $x+z=3$ "). Thus while $0 \leq u \leq 2 \pi$ (since $u=\theta$ ) we have $0 \leq z \leq 3-x$ or

$$
0 \leq v \leq 3-3 \cos u
$$

Next we need to know the surface element $d S=\|\mathbf{N}\| d u d v$. For a cylinder we have the standard formula $d S=R d \theta d z$ (see p. 940), which in our case gives $d S=3 d u d v$.

We then find for the surface area,

$$
\begin{aligned}
\operatorname{Area}(\mathcal{D}) & =\iint_{\mathcal{D}} 1 d S=\int_{0}^{2 \pi} \int_{0}^{3-3 \cos u} 3 d v d u \\
& =\int_{0}^{2 \pi} 9-9 \cos u d u=[9 u-9 \sin u]_{0}^{2 \pi}=18 \pi
\end{aligned}
$$

(3) Let $\mathcal{S}$ be the part of the sphere $x^{2}+y^{2}+z^{2}=4$ below the plane $z=1$. Evaluate the surface integral $\iint_{\mathcal{S}} z^{2} d S$.
Solution. 1. Parametrize the sphere using spherical coordinates. Since $\rho=2$ we get

$$
G(\theta, \phi)=(2 \sin \phi \cos \theta, 2 \sin \phi \sin \theta, 2 \cos \phi))
$$

If $z=1$ then $2 \cos \phi=1$, or $\cos \phi=\frac{1}{2}$, which means that $\phi=\pi / 3$. Therefore $z \leq 1$ corresponds to $\pi / 3 \leq \phi \leq \pi$. The parameter domain $\mathcal{D}$ is determined by

$$
0 \leq \theta \leq 2 \pi, \quad \frac{\pi}{3} \leq \phi \leq \pi
$$

2. We can use the standard formula for the area element $d S$ of a sphere (on p. 940),

$$
d S=\|\mathbf{N}\| d \phi d \theta=R^{2} \sin \phi d \phi d \theta=4 \sin \phi d \phi d \theta
$$

3. Finally, the integrand $z^{2}$ becomes $z^{2}=4 \cos ^{2} \phi$.

We find

$$
\begin{aligned}
\iint_{\mathcal{S}} z^{2} d S & =\int_{0}^{2 \pi} \int_{\pi / 3}^{\pi} 4 \cos ^{2} \phi \cdot 4 \sin \phi d \phi d \theta=16 \int_{0}^{2 \pi} 1 d \theta \cdot \int_{\pi / 3}^{\pi} \cos ^{2} \phi \sin \phi d \phi \\
& =32 \pi \cdot \int_{\pi / 3}^{\pi} \cos ^{2} \phi \sin \phi d \phi
\end{aligned}
$$

You do not need to consult wolframalpha to solve this integral. With the $u$-substitution $u=\cos \phi$ and $d u=-\sin \phi d \phi$ we get

$$
\int_{\pi / 3}^{\pi} \cos ^{2} \phi \sin \phi d \phi=\int_{\frac{1}{2}}^{-1}-u^{2} d u=\left[-\frac{1}{3} u^{3}\right]_{u=\frac{1}{2}}^{-1}=\frac{1}{3}-\left(-\frac{1}{24}\right)=\frac{9}{24}=\frac{3}{8}
$$

The final answer is

$$
\iint_{\mathcal{S}} z^{2} d S=32 \pi \cdot \frac{3}{8}=12 \pi
$$

