Math 13, Winter 2017

Homework set 5, due Wed Feb 8

Please show your work. No credit is given for solutions without justification.
(1) Let L_{1} be the straight line passing through $(3,0)$ and $(0,3)$ and let L_{2} be the line parallel to L_{1} passing through $(6,0)$ and $(0,6)$. Let \mathcal{D} be the region in the $x y$-plane enclosed by L_{1} and L_{2} and the lines $y=2 x$ and $y=x$. Let furthermore G be the map given by

$$
G(u, v):=\left(\frac{u}{v+1}, \frac{u \cdot v}{v+1}\right) \quad \text { i.e. } \quad x=\frac{u}{v+1}, y=\frac{u \cdot v}{v+1} .
$$

(a) Sketch \mathcal{D} in the $x y$-plane.

Solution: We draw the different boundary lines and obtain \mathcal{D} as the enclosed region

(b) Evaluate $\iint_{\mathcal{D}} x+y d A$ using a change of variables with the map G.

Solution:
Step 1: Finding the domain \mathcal{D}_{0} :
First we determine the region \mathcal{D}_{0} in the $u v$-plane, such that $G\left(\mathcal{D}_{0}\right)=\mathcal{D}$.
We know: L_{1} is given by the equation $y=3-x \Leftrightarrow x+y=3$ and L_{2} is given by the equation $y=6-x \Leftrightarrow x+y=6$. Furthermore $y=2 x \Leftrightarrow \frac{y}{x}=2$ and $y=x \Leftrightarrow \frac{y}{x}=1$. Hence

$$
\mathcal{D}=\left\{\begin{array}{l}
3 \leq x+y \leq 6 \\
1 \leq \frac{y}{x} \leq 2
\end{array} .\right.
$$

As $G(u, v)=(x, y)$, setting $x=\frac{u}{v+1}, y=\frac{u \cdot v}{v+1}$, we obtain in the above inequalities $x+y=u$ and $\frac{y}{x}=v$. The preimage of \mathcal{D} in the $u v$-plane is therefore

$$
\mathcal{D}_{0}=\left\{\begin{array}{l}
3 \leq u \leq 6 \\
1 \leq v \leq 2
\end{array}, \text { where } G\left(\mathcal{D}_{0}\right)=\mathcal{D} .\right.
$$

Step 2: Compute the Jacobian:

For $G(u, v)=\left(\frac{u}{v+1}, \frac{u \cdot v}{v+1}\right)=(x(u, v), y(u, v))$ we have to calculate the Jacobian determinant of the matrix of derivatives:

$$
J a c(G(u, v))=\left|\begin{array}{ll}
\frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\
\frac{\partial y}{\partial u} & \frac{\partial y}{\partial v}
\end{array}\right|=\left|\begin{array}{cc}
\frac{1}{v+1} & \frac{-u}{(v+1)^{2}} \\
\frac{v}{(v+1)} & \frac{u}{(v+1)^{2}}
\end{array}\right|=\frac{u}{(v+1)^{3}}+\frac{u v}{(v+1)^{3}}=\frac{u}{(v+1)^{2}} .
$$

Step 3: Substitute x and y in $f(x, y)=x+y$:
Since $x=\frac{u}{v+1}$ and $y=\frac{u \cdot v}{v+1}$ we get:

$$
f(x, y)=x+y=\frac{u}{v+1}+\frac{u \cdot v}{v+1}=u .
$$

Step 4: Apply the Change of Variables Formula:

Applying the Change of Variables Formula we get:

$$
\begin{aligned}
\iint_{\mathcal{D}} x+y d x d y=\iint_{\mathcal{D}_{0}} u \cdot\left|\frac{u}{(v+1)^{2}}\right| d u d v & =\int_{v=1}^{2} \int_{u=3}^{6} u \cdot \frac{u}{(v+1)^{2}} d u d v= \\
\int_{v=1}^{2} \frac{1}{(v+1)^{2}} \cdot\left(\int_{u=3}^{6} u^{2} d u\right) d v & =63 \cdot \int_{v=1}^{2} \frac{1}{(v+1)^{2}} d v= \\
\left.63 \cdot \frac{-1}{v+1}\right|_{v=1} ^{2} & =\frac{21}{2} .
\end{aligned}
$$

(2) Let $F(x, y, z):=\left(\frac{x+z}{y}, \frac{y}{z^{2}}, \frac{z^{2}}{x^{3}}\right)$ be a vector field.
(a) Calculate $\operatorname{div}(F)$.

Solution:

For $F(x, y, z):=\left(F_{1}, F_{2}, F_{3}\right)$ we have $\operatorname{div}(F)=\nabla \bullet F=\frac{\partial F_{1}}{\partial x}+\frac{\partial F_{2}}{\partial y}+\frac{\partial F_{3}}{\partial z}$, where

$$
\frac{\partial F_{1}}{\partial x}=\frac{\partial}{\partial x}\left(\frac{x+z}{y}\right)=\frac{1}{y} \quad, \quad \frac{\partial F_{2}}{\partial y}=\frac{\partial}{\partial y}\left(\frac{y}{z^{2}}\right)=\frac{1}{z^{2}} \quad, \quad \frac{\partial F_{3}}{\partial z}=\frac{\partial}{\partial z}\left(\frac{z^{2}}{x^{3}}\right)=\frac{2 z}{x^{3}} .
$$

Hence

$$
\operatorname{div}(F)=\frac{1}{y}+\frac{1}{z^{2}}+\frac{2 z}{x^{3}} .
$$

(b) Calculate $\operatorname{curl}(F)$.

Solution:

For $F(x, y, z):=\left(F_{1}, F_{2}, F_{3}\right)$ we have

$$
\operatorname{curl}(F)=\nabla \times F=\left(\frac{\partial F_{3}}{\partial y}-\frac{\partial F_{2}}{\partial z}, \frac{\partial F_{1}}{\partial z}-\frac{\partial F_{3}}{\partial x}, \frac{\partial F_{2}}{\partial x}-\frac{\partial F_{1}}{\partial y}\right) .
$$

Hence

$$
\operatorname{curl}(F)=\left(0-\frac{-2 y}{z^{3}}, \frac{1}{y}-\frac{-3 z^{2}}{x^{4}}, 0-\frac{(-x-z)}{y^{2}}\right)=\left(\frac{2 y}{z^{3}}, \frac{1}{y}+\frac{3 z^{2}}{x^{4}}, \frac{x+z}{y^{2}}\right) .
$$

(3) (Conservative vector fields and potential functions.)
(a) Let $F(x, y):=(x, y)$ and $G(x, y)=(-y, x)$ be two vector fields in the $x y$-plane. Find (by inspection) a potential function for F and prove that G is not conservative.

Solution:

For $f(x, y)=\frac{1}{2} \cdot\left(x^{2}+y^{2}\right)$ we have $\nabla f(x, y)=(x, y)=F(x, y)$.
For $G(x, y)=\left(G_{1}, G_{2}\right)$ we have:

$$
\frac{\partial G_{1}}{\partial y}=\frac{\partial}{\partial y}(-y)=-1 \neq 1=\frac{\partial}{\partial x} x=\frac{\partial G_{2}}{\partial x}
$$

Hence G can not be a conservative vector field by Ch. 16.1. Theorem 1 of the book.
(b) Show that the vector field $H(x, y, z):=\left(2 x y z, x^{2} z, x^{2} y z\right)$ in \mathbb{R}^{3} does not have a potential function.

Solution:

We have that

$$
\begin{aligned}
\operatorname{curl}(H)=\left(x^{2} z-x^{2}, 2 x y-2 x y z, 2 x z-2 x z\right) & = \\
\left(x^{2}(z-1), 2 x y(1-z), 0\right) & \neq(0,0,0) .
\end{aligned}
$$

Hence H can not be a conservative vector field by Ch. 16.1.Theorem 1 of the book.

