Math 13, Winter 2017

Homework set 2, due Wed Jan 18

Please show your work. No credit is given for solutions without justification.
(1) Let \mathcal{D} be the region in the $x y$-plane which lies above line $y=(x-1)$ and below the curve $y=2 \sqrt{x-1}$.
(a) Sketch \mathcal{D} in the $x y$-plane and describe \mathcal{D} as a horizontally simple region.

Solution: The two functions $f(x)=x-1$ and $g(x)=2 \sqrt{x-1}$ intersect in $x \in \mathbb{R}$ where $g(x)=f(x)$. Hence

$$
x-1=2 \sqrt{x-1} \Leftrightarrow(x-1)^{2}=4(x-1) \Leftrightarrow(x=1) \text { or } \quad(x=5) .
$$

This can also be seen in the plot:

The coordinates of the intersection points are $(x, y)=(1,0)$ and $(x, y)=(5,4)$. To parametrize \mathcal{D} as a horizontally simple region, we have to express the boundary curves in terms of y. We get:

$$
y=(x-1) \Leftrightarrow x=(y+1) \text { and } y=2 \sqrt{x-1} \Rightarrow x=\frac{y^{2}}{4}+1 .
$$

In total we get: $\mathcal{D}=\left\{\begin{array}{l}0 \leq y \leq 4 \\ \frac{y^{2}}{4}+1 \leq x \leq y+1\end{array}\right.$.
(b) Evaluate $\iint_{\mathcal{D}}\left(x+\frac{y}{2}\right)^{2} d A$ using the description from part (a).

Solution: It follows from part(a) that

$$
\begin{array}{r}
\iint_{\mathcal{D}}\left(x+\frac{y}{2}\right)^{2} d A=\int_{y=0}^{4}\left(\int_{x=\frac{y^{2}}{4}+1}^{y+1}\left(x+\frac{y}{2}\right)^{2} d x\right) d y= \\
\int_{y=0}^{4} \frac{1}{3}\left(\left(\frac{3 y}{2}+1\right)^{3}-\left(\frac{y^{2}}{4}+\frac{y}{2}+1\right)^{3}\right) d y= \\
\frac{1}{3} \cdot \int_{y=0}^{4}\left(\frac{3 y}{2}+1\right)^{3}-\left(\frac{1}{64} y^{6}+\frac{3}{32} y^{5}+\frac{3}{8} y^{4}+\frac{7}{8} y^{3}+\frac{3}{2} y^{2}+\frac{3}{2} y+1\right) d y= \\
\frac{1}{3} \cdot\left(\left.\frac{\left(\frac{3 y}{2}+1\right)^{4}}{6}\right|_{0} ^{4}-\frac{9848}{35}\right)=\frac{1}{3} \cdot\left(400-\frac{9848}{35}\right)=\frac{1384}{35} .
\end{array}
$$

(2) Let \mathcal{W} be the solid region enclosed by the surfaces given by

$$
z=x^{2}, \quad z+y=1 \text { and } y=0 .
$$

Draw the region \mathcal{W} then express $\iiint_{\mathcal{W}} 1 d V$ as an iterated integral in three different ways, by projecting onto each of the three different coordinate planes.
Note: You do NOT have to calculate the integral.

Solution:

Plot:

$x y$-plane: We first gather some information. \mathcal{W} is bounded by three intersecting surfaces. One is the $x z$-plane $(y=0)$. The other two surfaces are given by the equations $z=x^{2}$ and $z+y=1$. If the two surfaces $z=x^{2}$ and $z+y=1 \Leftrightarrow z=1-y$ intersect then

$$
\begin{equation*}
x^{2}=z=1-y \Leftrightarrow y=1-x^{2} . \tag{*}
\end{equation*}
$$

If we project onto the $x y$-plane, we have to describe the z-coordinates of \mathcal{W} as a function of x and y. We have that $z=x^{2}$ and $z=1-y$. As we are looking for the enclosed region, we must have

$$
x^{2} \leq z \leq 1-y .
$$

We have already described the projection of the boundary line at the intersection of the two surfaces in Equation $\left({ }^{*}\right)$. This gives us the y-coordinates of one boundary of the domain \mathcal{W} in terms of x :

$$
y=1-x^{2} .
$$

Note that we also could have expressed the x-coordinates of the boundary in terms of y. Finally we have to determine the interval for the x-coordinates. It is given by the intersection of $y=1-x^{2}$ with the plane $y=0$. Hence

$$
1-x^{2}=y=0 \Leftrightarrow(x=-1) \text { or } \quad(x=1) .
$$

In total we get the following parametrization of \mathcal{W} :

$$
-1 \leq x \leq 1, \quad 0 \leq y \leq 1-x^{2} \quad \text { and } \quad x^{2} \leq z \leq 1-y
$$

In a similar fashion we obtain for the other two projections:
$y z$-plane: $0 \leq z \leq 1,0 \leq y \leq 1-z$, and $-\sqrt{z} \leq x \leq \sqrt{z}$.
$x z$-plane: $-1 \leq x \leq 1, \quad x^{2} \leq z \leq 1$, and $0 \leq y \leq 1-z$.
(3) Let \mathcal{W} be the tetrahedron in the first octant of space, whose vertices are

$$
(0,0,0), \quad(0,0,4), \quad(2,0,0) \text { and }(0,2,0)
$$

Let T be the temperature in this tetrahedron, given by $T(x, y, z):=6 y$ in degrees centigrade.
(a) Calculate the volume of \mathcal{W}.

Solution: First we have to parametrize the tetrahedron. The plane determined by the points $(0,0,4),(2,0,0)$ and $(0,2,0)$ has the equation

$$
z=4-2 x-2 y
$$

This result can be obtained by plugging in the points into the general equation of a plane $z=a x+b y+c$ and then solving for a, b and c.
Then we have to parametrize the x and y coordinates of our domain \mathcal{W}. The intersection of $z=4-2 x-2 y$ with the $x y$-plane $(z=0)$ is

$$
4-2 x-2 y=0 \Leftrightarrow y=2-x, \text { hence } 0 \leq y \leq 2-x .
$$

Finally, the interval for the x-coordinates is $x \in[0,2]$. In total we get:

$$
\mathcal{W}=\left\{\begin{array}{l}
0 \leq x \leq 2 \\
0 \leq y \leq 2-x \\
0 \leq z \leq 4-2 x-2 y
\end{array}\right.
$$

To find the volume we have to evaluate the integral

$$
\begin{aligned}
\operatorname{vol}(\mathcal{W})=\iiint_{\mathcal{W}} 1 d V=\int_{x=0}^{2} \int_{y=0}^{2-x} \int_{z=0}^{4-2 x-2 y} 1 d z d y d x & = \\
\int_{x=0}^{2} \int_{y=0}^{2-x} 4-2 x-2 y d y d x & = \\
\int_{x=0}^{2}(4-2 x)(2-x)-(2-x)^{2} d x & =\int_{x=0}^{2}(x-2)^{2} d x=\frac{8}{3} .
\end{aligned}
$$

(b) Calculate the average temperature in \mathcal{W}.

Solution: The average temperature \bar{T} is $\bar{T}=\frac{1}{\operatorname{vol}(\mathcal{W})} \cdot \iiint_{\mathcal{W}} T(x, y, z) d V$. We get:

$$
\begin{aligned}
\iiint_{\mathcal{W}} T(x, y, z) d V=\int_{x=0}^{2} \int_{y=0}^{2-x} \int_{z=0}^{4-2 x-2 y} 6 y d z d y d x & = \\
\int_{x=0}^{2} \int_{y=0}^{2-x} 6 y(4-2 x-2 y) d y d x & = \\
\int_{x=0}^{2}(12-6 x)(2-x)^{2}-4(2-x)^{3} d x & =\int_{x=0}^{2} 2(2-x)^{3} d x=8 .
\end{aligned}
$$

In total we get for the average temperature in the tetrahedron:

$$
\bar{T}=\frac{3}{8} \cdot 8=3^{\circ} C
$$

