HOMEWORK 8 (DUE WEDNESDAY MARCH 2)

(1) (§16.4 Problem 40) Let \mathcal{S} be the portion of the sphere $x^{2}+y^{2}+z^{2}=9$ where $1 \leq x^{2}+y^{2} \leq 4$ and $z \geq 0$ (see Figure 21 on p. 943). Find a parametrization of \mathcal{S} in polar coordinates and use it to compute:
(a) The area of \mathcal{S}.
(b) $\iint_{\mathcal{S}} z^{-1} d S$.
(2) (§16.5 Problem 16) Let $\boldsymbol{F}=\left\langle 0,0, z^{2}\right\rangle$ and \mathcal{S} be parametrized by $G(u, v)=$ $(u \cos v, u, \sin v, v)$ for $0 \leq u \leq 1,0 \leq v \leq 2 \pi$ wtih upward-pointing normal. Calculate

$$
\iint_{\mathcal{S}} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

(3) (§16.5 Problem 20) Show that the flux of $\boldsymbol{F}=\frac{\boldsymbol{e}_{r}}{r^{2}}$ through a sphere centered at the origin does not depend on the radius of the sphere.
(4) ($\$ 16.5$ adapted from Problems 37 and 38) The surface \mathcal{S} with parametrization

$$
G(u, v)=\left(\left(1+v \cos \frac{u}{2}\right) \cos u,\left(1+v \cos \frac{u}{2}\right) \sin u, v \sin \frac{u}{2}\right)
$$

is a Möbius strip.
(a) The intersection of \mathcal{S} with the $x y$-plane is the unit circle $(\cos u, \sin u, 0)$. Verify that the normal vector along this circle is

$$
\boldsymbol{N}(u, 0)=\left\langle\cos u \sin \frac{u}{2}, \sin u \sin \frac{u}{2},-\cos \frac{u}{2}\right\rangle .
$$

(b) As u varies from 0 to 2π, the point $G(u, 0)$ moves once around the unit circle, beginnning and ending at $G(0,0)=G(2 \pi, 0)=(1,0,0)$. Verify that $\boldsymbol{N}(u, 0)$ is a unit vector that varies continuously but that $\boldsymbol{N}(2 \pi, 0)=-\boldsymbol{N}(0,0)$ and explain why this shows that \mathcal{S} is not orientable.
(5) (§17.3 Problem 8) Let $\boldsymbol{F}=\left\langle x^{2} z, y x, x y z\right\rangle$ and \mathcal{S} the boundary of the tetrahedron given by $x+y+z=1, x \geq 0, y \geq 0, z \geq 0$. Use the divergence theoremo to calculate

$$
\iint_{\mathcal{S}} \boldsymbol{F} \cdot d \boldsymbol{S}
$$

(6) (§17.3 Problem 23) Let \mathcal{W} be the region bounded by the cylinder $x^{2}+y^{2}=4$, the plane $z=x+1$, and the $x y$-plane (see Figure 19 on p. 992). Use the divergence theorem to compute the flux of $\boldsymbol{F}=\left\langle z, x, y+z^{2}\right\rangle$ through the boundary of \mathcal{W}.

