HOMEWORK 5 (DUE WEDNESDAY FEBRUARY 10)

- (1) (Problem 58 in §16.2) Note that a curve C in polar form $r = f(\theta)$ is parametrized by $\mathbf{r} = (f(\theta) \cos \theta, f(\theta) \sin \theta)$ becaue the *x* and *y*-coordinates are given by $x = r \cos \theta$ and $y = r \sin \theta$.
 - (a) Show that $\|\boldsymbol{r}'(\theta)\| = \sqrt{f(\theta)^2 + f'(\theta)^2}$.
 - (b) Evaluate $\int_{\mathcal{C}}^{r} (x-y)^2 ds$, where \mathcal{C} is the semicircle with polar equation $r = 2\cos\theta, \ 0 \le \theta \le \frac{\pi}{2}$.
- (2) (Problem 46 in §16.1) Find potential functions for $F = \frac{e_r}{r^3}$ and $G = \frac{e_r}{r^4}$ in \mathbb{R}^3 .
- (3) (Problem 69 in §16.2) Let $F(x, y) = \langle x, 0 \rangle$. Prove that if C is any path from (a, b) to (c, d), then

$$\int_{\mathcal{C}} \boldsymbol{F} \cdot d\boldsymbol{r} = \frac{1}{2}(c^2 - a^2).$$

(4) (Problem 30 in §16.3) The vector field $\mathbf{F} = \left\langle \frac{x}{x^2 + y^2}, \frac{y}{x^2 + y^2} \right\rangle$ is defined on the domain $\mathcal{D} = \{(x, y) \neq (0, 0)\}.$

- (a) Is \mathcal{D} simply connected?
- (b) Show that F satisfies the cross-partial condition. Does this guarantee that F is conservative?
- (c) Show that F is conservative on \mathcal{D} by finding a potential function.
- (d) Do these results contradict Theorem 4?
- (5) (Problem 50 in §16.2) Calculate V(P) at the origin P = (0, 0) if the electric charge is distributed along $y = x^{-1}$ for $\frac{1}{2} \le x \le 2$ with charge density $\delta(x, y) = x^3 y$.
- (6) (Problem 28 in §16.3) An electron at rest at P = (5,3,7) moves along a path ending at Q = (1,1,1) under the influence of the electric field (in newtons per coulomb)

$$\mathbf{F}(x, y, z) = 400(x^2 + z^2)^{-1} \langle x, 0, z \rangle.$$

- (a) Find a potential function for F.
- (b) What is the electron's speed at the point Q? (Use conservation of energy and the value $q_e/m_e = -1.76 \times 10^{11} \text{ C/kg}$, where q_e and m_e are the charge and mass on the electron, respectively.