HOMEWORK 5 (DUE WEDNESDAY FEBRUARY 10)

(1) (Problem 58 in $\S 16.2$) Note that a curve \mathcal{C} in polar form $r=f(\theta)$ is parametrized by $\boldsymbol{r}=(f(\theta) \cos \theta, f(\theta) \sin \theta)$ becaue the x - and y-coordinates are given by $x=r \cos \theta$ and $y=r \sin \theta$.
(a) Show that $\left\|\boldsymbol{r}^{\prime}(\theta)\right\|=\sqrt{f(\theta)^{2}+f^{\prime}(\theta)^{2}}$.
(b) Evaluate $\int_{\mathcal{C}}(x-y)^{2} d s$, where \mathcal{C} is the semicircle with polar equation $r=2 \cos \theta, 0 \leq \theta \leq \frac{\pi}{2}$.
(2) (Problem 46 in §16.1) Find potential functions for $\boldsymbol{F}=\frac{\boldsymbol{e}_{\boldsymbol{r}}}{r^{3}}$ and $\boldsymbol{G}=\frac{\boldsymbol{e}_{\boldsymbol{r}}}{r^{4}}$ in \mathbb{R}^{3}.
(3) (Problem 69 in $\S 16.2$) Let $\boldsymbol{F}(x, y)=\langle x, 0\rangle$. Prove that if \mathcal{C} is any path from (a, b) to (c, d), then

$$
\int_{\mathcal{C}} \boldsymbol{F} \cdot d \boldsymbol{r}=\frac{1}{2}\left(c^{2}-a^{2}\right) .
$$

(4) (Problem 30 in §16.3) The vector field $\boldsymbol{F}=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle$ is defined on the domain $\mathcal{D}=\{(x, y) \neq(0,0)\}$.
(a) Is \mathcal{D} simply connected?
(b) Show that \boldsymbol{F} satisfies the cross-partial condition. Does this guarantee that \boldsymbol{F} is conservative?
(c) Show that \boldsymbol{F} is conservative on \mathcal{D} by finding a potential function.
(d) Do these results contradict Theorem 4?
(5) (Problem 50 in $\S 16.2$) Calculate $V(P)$ at the origin $P=(0,0)$ if the electric charge is distributed along $y=x^{-1}$ for $\frac{1}{2} \leq x \leq 2$ with charge density $\delta(x, y)=x^{3} y$.
(6) (Problem 28 in §16.3) An electron at rest at $P=(5,3,7)$ moves along a path ending at $Q=(1,1,1)$ under the influence of the electric field (in newtons per coulomb)

$$
\boldsymbol{F}(x, y, z)=400\left(x^{2}+z^{2}\right)^{-1}\langle x, 0, z\rangle
$$

(a) Find a potential function for \boldsymbol{F}.
(b) What is the electron's speed at the point Q ? (Use conservation of energy and the value $q_{e} / m_{e}=-1.76 \times 10^{11} \mathrm{C} / \mathrm{kg}$, where q_{e} and m_{e} are the charge and mass on the electron, respectively.

