HOMEWORK 2 (DUE WEDNESDAY JANUARY 20)

(1) (Problem 32 in §15.5) Calculate I_{x} and I_{y} for the half-disk $x^{2}+y^{2} \leq R^{2}$, $x \geq 0$ (in meters), with total mass $M \mathrm{~kg}$ and uniform mass density.
(2) (Problem 24 in §15.3) Describe (and sketch) the domain of integration and evaluate:

$$
\int_{0}^{3} \int_{0}^{\sqrt{9-x^{2}}} \int_{0}^{\sqrt{9-x^{2}-y^{2}}} x y d z d y d x
$$

(3) (Problem 60 in §15.4) Recall that the improper integral $\int_{0}^{1} x^{-a} d x$ converges if and only if $a<1$. For which values of a does $\iint_{\mathcal{D}} r^{-a} d A$ converge when $r=\sqrt{x^{2}+y^{2}}$ and \mathcal{D} is the unit disk $x^{2}+y^{2} \leq 1$?
(4) (Problem 41 in §15.4) Use cylindrical coordinates to find the volume of a sphere of radius a from which a central cylinder of radius b has been removed, where $0<b<a$.
(5) (Problem 48 in §15.4) Use spherical coordinates to calculate

$$
\iiint_{\mathcal{W}} 1 d V
$$

where \mathcal{W} is the region

$$
x^{2}+y^{2}+z^{2} \leq 4 z, \quad z \geq \sqrt{x^{2}+y^{2}}
$$

