Math 13, Homework \#9

Due Monday, March 7, 2016

1. (17.3.27) The electric field due to a unit electric dipole oriented in the \vec{k}-direction is $\vec{E}=\nabla\left(z / r^{3}\right)$, where $r=\sqrt{x^{2}+y^{2}+z^{2}}$. Let $\overrightarrow{e_{r}}=r^{-1}\langle x, y, z\rangle$.
(a) Show that $\vec{E}=r^{-3} \vec{k}-3 z r^{-4} \overrightarrow{e_{r}}$.
(b) Calculate the flux of \vec{E} through a sphere centered at the origin.
(c) Calculate $\operatorname{div}(E)$.
(d) Can we use the Divergence Theorem to compute the flux of \vec{E} through a sphere centered at the origin?
2. (17.2.18) Let $\vec{F}=\langle 0,-z, 1\rangle$. Let \mathcal{S} be the spherical cap $x^{2}+y^{2}+z^{2} \leq 1$, where $z \geq \frac{1}{2}$.
(a) Evaluate $\iint_{\mathcal{S}} \vec{F} \cdot d \vec{S}$ directly as a surface integral.
(b) Verify that $\vec{F}=\operatorname{curl}(\vec{A})$, where $\vec{A}=\langle 0, x, x z\rangle$.
(c) Evaluate the flux of \vec{F} through \mathcal{S} again by using Stokes' Theorem.
3. (17.2.11) Let $\vec{F}=\langle 3 y,-2 x, 3 y\rangle$, and \mathcal{C} be the circle $x^{2}+y^{2}=9, z=2$, oriented counterclockwise as viewed from above. Apply Stokes' Theorem to evaluate $\oint_{\mathcal{C}} \vec{F} \cdot d \vec{r}$ by finding the flux of $\operatorname{curl}(\vec{F})$ across an appropriate surface.
