Math 13, Homework #9

Due Monday, March 7, 2016

- 1. (17.3.27) The electric field due to a unit electric dipole oriented in the \vec{k} -direction is $\vec{E} = \nabla(z/r^3)$, where $r = \sqrt{x^2 + y^2 + z^2}$. Let $\vec{e_r} = r^{-1}\langle x, y, z \rangle$.
- (a) Show that $\vec{E} = r^{-3}\vec{k} 3zr^{-4}\vec{e_r}$.
- (b) Calculate the flux of \vec{E} through a sphere centered at the origin.
- (c) Calculate div(E).
- (d) Can we use the Divergence Theorem to compute the flux of \vec{E} through a sphere centered at the origin?
- **2.** (17.2.18) Let $\vec{F} = \langle 0, -z, 1 \rangle$. Let \mathcal{S} be the spherical cap $x^2 + y^2 + z^2 \leq 1$, where $z \geq \frac{1}{2}$.
- (a) Evaluate $\iint_{\mathcal{S}} \vec{F} \cdot d\vec{S}$ directly as a surface integral.
- (b) Verify that $\vec{F} = curl(\vec{A})$, where $\vec{A} = \langle 0, x, xz \rangle$.
- (c) Evaluate the flux of \vec{F} through $\mathcal S$ again by using Stokes' Theorem.
- **3.** (17.2.11) Let $\vec{F} = \langle 3y, -2x, 3y \rangle$, and \mathcal{C} be the circle $x^2 + y^2 = 9, z = 2$, oriented counterclockwise as viewed from above. Apply Stokes' Theorem to evaluate $\oint_{\mathcal{C}} \vec{F} \cdot d\vec{r}$ by finding the flux of $curl(\vec{F})$ across an appropriate surface.