Math 13, Homework \#6

Due February 17, 2016

1. (17.1.8) Use Green's Theorem to evaluate the line integral given by

$$
\oint_{\mathcal{C}}(\ln x+y) d x-x^{2} d y
$$

where \mathcal{C} is the rectangle with vertices $(1,1),(3,1),(1,4),(3,4)$, oriented counterclockwise.
2. (17.1.19) Consider the curve in the $x y$-plane given by $x^{3}+y^{3}=3 x y$ (this curve is known as the folium of Descartes).
(a) Show that the curve has a parametrization in terms of $t=y / x$ given by

$$
x=\frac{3 t}{1+t^{3}}, \quad y=\frac{3 t^{2}}{1+t^{3}}, \quad(-\infty<t<\infty) \quad(t \neq-1)
$$

(b) Show that

$$
x d y-y d x=\frac{9 t^{2}}{\left(1+t^{3}\right)^{2}} d t
$$

Hint: By the Quotient Rule, $x^{2} d\left(\frac{y}{x}\right)=x d y-y d x$.
(c) Find the area of the loop enclosed by the curve in the first quadrant. Hint: The limits of integration are 0 and ∞.
3. (17.1.21) The centroid of a domain \mathcal{D} enclosed by a simple closed curve \mathcal{C} is the point with coordinates $(\bar{x}, \bar{y})=\left(M_{y} / M, M_{x} / M\right)$, where M is the area of \mathcal{D} and the moments are defined by

$$
M_{x}=\iint_{\mathcal{D}} y d A, \quad \text { and } \quad M_{y}=\iint_{\mathcal{D}} x d A
$$

Show that $M_{x}=\oint_{\mathcal{C}} x y d y$. Find a similar expression for M_{y}.
4. (16.1.30) Let the vector field $\vec{F}(x, y, z)$ be defined by

$$
\vec{F}=<\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}, 0>
$$

Calculate $\operatorname{div}(\vec{F})$ and $\operatorname{curl}(\vec{F})$.
5. (16.1.38) Find (by inspection) a potential function for

$$
\vec{F}=<x, 0>
$$

and show that

$$
\vec{G}=<y, 0>
$$

is not conservative.

