Math 13, Homework \#3

Due January 27, 2016

1. (12.4.42)

Find the area of the parallelogram determined by the vectors $\langle a, 0,0\rangle$ and $<0, b, c\rangle$.
2. (15.6.22)

Let $G(u, v)=(u-u v, u v)$.
(a) Show that the image under G of the horizontal line $v=c$ is $y=\frac{c}{1-c} x$ if $c \neq 1$, and is the y-axis if $c=1$.
(b) Determine the images under G of vertical lines in the $u v$-plane.
(c) Compute the Jacobian of G.
(d) Observe that by the formula for the area of a triangle, the region \mathcal{D} bounded by the inequalities $x \geq 0, y \geq 0, x+y \geq a$, and $x+y \leq b$ has area $\frac{1}{2}\left(b^{2}-a^{2}\right)$. Compute the area of \mathcal{D} again, using the Change of Variables Formula applied to G.
(e) Calculate $\iint_{\mathcal{D}} x y d x d y$.
3. (15.6.24)

Find a linear map T that maps $[0,1] \times[0,1]$ to the parallelogram \mathcal{P} in the $x y$-plane with vertices $(0,0),(2,2),(1,4),(3,6)$. Then calculate the double integral of $e^{2 x-y}$ over \mathcal{P} via change of variables.
4. (15.6.40)

Sketch the domain

$$
\mathcal{D}=\{(x, y): 1 \leq x+y \leq 4,-4 \leq y-2 x \leq 1\}
$$

(a) Let F be the map $u=x+y, v=y-2 x$ from the $x y$-plane to the $u v$-plane, and let G be its inverse.
(b) Compute $\iint_{\mathcal{D}} e^{x+y} d x d y$ using the Change of Variables formula with the map G. Hint: It is not necessary to solve for G explicitly.

