Practice Final

1. Suppose $f(x, y)=\left(\ln \left(x^{2}+y^{2}\right), e^{x y}\right)$ and $g(s, t)=\left(s^{2} e^{t},(2 s+t)^{2}\right)$. Find the matrix of the derivative $(f \circ g)^{\prime}(1,0)$.
2. Consider the parametrized surface

$$
\mathbf{r}(u, v)=\left\langle 4 u \cos (v), u^{4}, u \sin (v)\right\rangle .
$$

(a) Find the surface area of the part of the surface in the first octant and to the left of the plane $y=1$ (so $y \leq 1$).
(b) Express the surface in Cartesian coordinates.
(c) Find the equation of the tangent plane at the point $\mathbf{r}(1,0)$. (You can use any method you prefer.)
3. Determine the volume of the solid bounded by $z=\sqrt{x^{2}+y^{2}}, x^{2}+y^{2}+z^{2}=1$ and the $x y$-plane.
4. Determine the mass of a wire bent into the shape given by the equation $(x-1)^{2}+y^{2}=4$ if its linear mass density is equal to the square of its distance to the x-axis.
5. Let $L: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be the linear transformation satisfying $L\left(\mathbf{v}_{1}\right)=(5,3)$ and $L\left(\mathbf{v}_{2}\right)=$ $(3,4)$, where $\mathbf{v}_{\mathbf{1}}=(1,1)$ and $\mathbf{v}_{\mathbf{2}}=(0,1)$.
(a) Write down the representing matrix for L.
(b) Let P be a parallelogram of area 3. If L maps P to the parallelogram Q, what is the area of Q ?
6. Evaluate

$$
\int_{C} 2 x y z^{2} d x+\left(x^{2} z^{2}+z\right) d y+\left(2 x^{2} y z+y\right)
$$

where C is the curve

$$
\mathbf{r}(t)=\left\langle e^{\sqrt{1-t^{2}}}, t^{3}, \sqrt{3+t^{2}}\right)
$$

$-1 \leq t \leq 1$ by any appropriate method.
7. Evaluate the following surface integrals. If you use any special techniques, be sure to justify that the technique is applicable.
(a)

$$
\iint_{S} \mathbf{F} \cdot \mathbf{n} d S
$$

where S is the positively oriented boundary (i.e., oriented with the outward normal) of the solid region lying above $z=\sqrt{\frac{x^{2}+y^{2}}{3}}$ and below $x^{2}+y^{2}+z^{2}=9$ and

$$
\mathbf{F}(x, y, z)=\left\langle e^{y^{2}}+x, x z+2 y, z\right\rangle .
$$

(b)

$$
\iint \operatorname{curl}(\mathbf{F}) \cdot \mathbf{n} d S
$$

where

$$
\mathbf{F}(x, y, z)=\left\langle-y, x, e^{x^{3}+y^{4}}\right\rangle
$$

and S is the hemisphere $x^{2}+y^{2}+z^{2}=4, z \geq 0$, oriented upwards. (S does not include the disk in the $x y$-plane.)
8. Suppose \mathbf{F} can be written as the curl of another vector field \mathbf{G}. What is the value of $\iint_{S} \mathbf{F} \cdot \mathrm{~d} \mathbf{S}$, where S is the surface of a simple solid region in \mathbb{R}^{3} with positive orientation? Justify your answer briefly.
9. Suppose that \mathbf{F} is a vector field in \mathbf{R}^{3} and that $f: \mathbf{R}^{3} \rightarrow \mathbf{R}$ is a smooth function. For each of the following expressions, indicate whether the expression makes sense and, if so, whether it produces a vector field or a real-valued (scalar) function:
(a) $\operatorname{Div}(\nabla f)$
(b) $\nabla(\operatorname{Div}(\mathbf{F}))$
(c) $\operatorname{curl}(\operatorname{Div}(\mathbf{F})$
(d) $\operatorname{Div}(\operatorname{curl}(\mathbf{F}))$
(e) $\nabla(\operatorname{curl}(\mathbf{F}))$
10. Let E be a region in \mathbf{R}^{2} bounded by a simple closed, piecewise smooth, positively oriented curve C. Which of the following is NOT equal to the area of E ?
(a) $\int_{C}-y d x$
(b) $\int_{C} 2 y d x+3 x d y$
(c) $\int_{C} y d x+2 x d y$
(d) $\int_{C}-y d x+x d y$
(e) $\int_{C} x d y$
11. Indicate whether each of the following regions is simply-connected:
(a) \mathbf{R}^{3} with the origin removed.
(b) \mathbf{R}^{3} with the x axis removed.
(c) \mathbf{R}^{3} with the positive half of the x-axis removed.
(d) \mathbf{R}^{3} with the circle $x^{2}+y^{2}=1, z=0$, removed.
12. Find

$$
\int_{C} e^{x^{2}} d x+x d y+x y d z
$$

where C is the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+2 y+z=$ 10. Here C is assumed to be oriented counterclockwise when viewed from above.
13. Each of the following vector fields satisfies the condition $\operatorname{curl}(\mathbf{F})=0$. In each case, determine whether the vector field is conservative. Justify your answer.
(a) $\mathbf{F}(x, y)=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}, z^{2}\right\rangle$
(b) $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, z^{2}\right\rangle$

