Practice Final

- 1. Suppose $f(x, y) = (\ln(x^2 + y^2), e^{xy})$ and $g(s, t) = (s^2 e^t, (2s + t)^2)$. Find the matrix of the derivative $(f \circ g)'(1, 0)$.
- 2. Consider the parametrized surface

 $\mathbf{r}(u,v) = \langle 4u\cos(v), u^4, u\sin(v) \rangle.$

- (a) Find the surface area of the part of the surface in the first octant and to the left of the plane y = 1 (so $y \le 1$).
- (b) Express the surface in Cartesian coordinates.
- (c) Find the equation of the tangent plane at the point $\mathbf{r}(1,0)$. (You can use any method you prefer.)
- 3. Determine the volume of the solid bounded by $z = \sqrt{x^2 + y^2}$, $x^2 + y^2 + z^2 = 1$ and the *xy*-plane.
- 4. Determine the mass of a wire bent into the shape given by the equation $(x-1)^2 + y^2 = 4$ if its linear mass density is equal to the square of its distance to the x-axis.
- 5. Let $L : \mathbb{R}^2 \to \mathbb{R}^2$ be the linear transformation satisfying $L(\mathbf{v}_1) = (5,3)$ and $L(\mathbf{v}_2) = (3,4)$, where $\mathbf{v_1} = (1,1)$ and $\mathbf{v_2} = (0,1)$.
 - (a) Write down the representing matrix for L.
 - (b) Let P be a parallelogram of area 3. If L maps P to the parallelogram Q, what is the area of Q?
- 6. Evaluate

$$\int_C 2xyz^2 dx + (x^2z^2 + z) \, dy + (2x^2yz + y)$$

where C is the curve

$$\mathbf{r}(t) = \langle e^{\sqrt{1-t^2}}, t^3, \sqrt{3+t^2} \rangle$$

- $-1 \le t \le 1$ by any appropriate method.
- 7. Evaluate the following surface integrals. If you use any special techniques, be sure to justify that the technique is applicable.
 - (a)

$$\int \int_{S} \mathbf{F} \cdot \mathbf{n} \, dS$$

where S is the positively oriented boundary (i.e., oriented with the outward normal) of the solid region lying above $z = \sqrt{\frac{x^2+y^2}{3}}$ and below $x^2 + y^2 + z^2 = 9$ and

$$\mathbf{F}(x, y, z) = \langle e^{y^2} + x, xz + 2y, z \rangle.$$

(b)

$$\int \int curl(\mathbf{F}) \cdot \mathbf{n} \, dS$$

where

$$\mathbf{F}(x,y,z) = \langle -y, x, e^{x^3 + y^4} \rangle$$

and S is the hemisphere $x^2 + y^2 + z^2 = 4$, $z \ge 0$, oriented upwards. (S does not include the disk in the xy-plane.)

- 8. Suppose \mathbf{F} can be written as the curl of another vector field \mathbf{G} . What is the value of $\iint_{S} \mathbf{F} \cdot d\mathbf{S}$, where S is the surface of a simple solid region in \mathbb{R}^{3} with positive orientation? Justify your answer briefly.
- 9. Suppose that \mathbf{F} is a vector field in \mathbf{R}^3 and that $f : \mathbf{R}^3 \to \mathbf{R}$ is a smooth function. For each of the following expressions, indicate whether the expression makes sense and, if so, whether it produces a vector field or a real-valued (scalar) function:
 - (a) $Div(\nabla f)$
 - (b) $\nabla(Div(\mathbf{F}))$
 - (c) $curl(Div(\mathbf{F})$
 - (d) $Div(curl(\mathbf{F}))$
 - (e) $\nabla(curl(\mathbf{F}))$
- 10. Let E be a region in \mathbb{R}^2 bounded by a simple closed, piecewise smooth, positively oriented curve C. Which of the following is NOT equal to the area of E?
 - (a) $\int_C -y \, dx$
 - (b) $\int_C 2y \, dx + 3x \, dy$
 - (c) $\int_C y \, dx + 2x \, dy$
 - (d) $\int_C -y \, dx + x \, dy$
 - (e) $\int_C x \, dy$
- 11. Indicate whether each of the following regions is simply-connected:
 - (a) \mathbf{R}^3 with the origin removed.
 - (b) \mathbf{R}^3 with the *x* axis removed.
 - (c) \mathbf{R}^3 with the positive half of the *x*-axis removed.
 - (d) \mathbf{R}^3 with the circle $x^2 + y^2 = 1$, z = 0, removed.

12. Find

$$\int_C e^{x^2} \, dx + x \, dy + xy \, dz$$

where C is the curve of intersection of the cylinder $x^2+y^2 = 1$ and the plane x+2y+z = 10. Here C is assumed to be oriented counterclockwise when viewed from above.

13. Each of the following vector fields satisfies the condition $curl(\mathbf{F}) = 0$. In each case, determine whether the vector field is conservative. Justify your answer.

(a)
$$\mathbf{F}(x,y) = \langle \frac{x}{x^2+y^2}, \frac{y}{x^2+y^2}, z^2 \rangle$$

(b)
$$\mathbf{F}(x,y) = \langle \frac{-y}{x^2+y^2}, \frac{x}{x^2+y^2}, z^2 \rangle$$