Practice Exam 2

1. A wire is bent in the shape of the curve $y=x^{3}, 0 \leq x \leq 1$. Find the total mass of the wire if the density is given by $\rho(x, y)=y$.
2. Let $\mathbf{F}(x, y, z)=\left\langle 2 x y z, x^{2} z+z+1, x^{2} y+y+1\right\rangle$.
(a) Find a function f such that $\mathbf{F}=\nabla(f)$.
(b) Evaluate $\int_{C} \mathbf{F} \cdot d \mathbf{r}$ where C is the curve given by $\mathbf{r}(t)=\left\langle\frac{t}{4}, \sqrt{9+t^{2}}, \frac{t}{2}\right\rangle, 0 \leq t \leq 4$.
3. Match each vector field with its plot.
(a) \qquad $\mathbf{F}(x, y)=\left\langle\frac{1}{5}, \frac{x}{5}\right\rangle$
(b) \qquad $\mathbf{F}(x, y)=\left\langle\frac{x}{5}, \frac{1}{5}\right\rangle$
(c) \qquad $\mathbf{F}(x, y)=\nabla\left(\frac{x^{2}+y^{2}}{10}\right)$
(d)

$$
\ldots \mathbf{F}(x, y)=\left\langle\frac{x}{\sqrt{x^{2}+y^{2}}}, \frac{y}{\sqrt{x^{2}+y^{2}}}\right\rangle
$$

Figure 1:
4. Compute each of the following line integrals by any appropriate method. If you use a method other than direct computation, then include the following:

- Indicate what technique you are using.
- Justify that the technique can be used. (E.g., if you are using techniques applicable only to conservative vector fields, show that the vector field is conservative.)
- Apply the technique to compute the line integral.
(a)

$$
\int_{C} x y d x+x^{2} d y
$$

where C is the straight line segment from $(0,2)$ to $(4,5)$.
(b)

$$
\int_{C}(2 x y+1) d x+\left(x^{2}+e^{y^{2}}\right) d y
$$

where C is given by $\mathbf{r}(t)=\left(t, t^{2}-t\right), 0 \leq t \leq 1$.
(c)

$$
\int_{C} y d x+\left(2 x+e^{y^{2}}\right) d y
$$

where C is the circle given by $\mathbf{r}(t)=(1+2 \cos (t), 2 \sin (t)), 0 \leq t \leq 2 \pi$.
5. Each of the following vector fields satisfies the condition " $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y}$. (You do not need to verify this fact.) In each case, determine whether the vector field is conservative. Justify your answer.
(a) $\mathbf{F}(x, y)=\left\langle\frac{x}{x^{2}+y^{2}}, \frac{y}{x^{2}+y^{2}}\right\rangle$
(b) (See instructions on previous page.) $\mathbf{F}(x, y)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right\rangle$
6. Find the area enclosed by the curve $\mathbf{r}(t)=\left\langle t^{3}-t,\left(t-\frac{1}{2}\right)^{2}\right\rangle, 0 \leq t \leq 1$.
7. Let R be the parallelogram with vertices $(0,0),(4,1),(1,2)$ and $(5,3)$. Evaluate

$$
\iint_{R} x d A
$$

by first making an appropriate change of variable so that the region of integration is a square in the u, v-plane.

