Math 13 Winter 2014

First Practice Exam

1. Let S be the surface

$$
x y z+z^{3}=2 .
$$

Which of the following lines is orthogonal to the tangent plane to S at the point $(1,1,1)$?
(a) $\mathbf{r}(t)=\langle 1+2 t, 1+2 t, 1+5 t\rangle$
(b) $\mathbf{r}(t)=\langle 1+t, 1+t, 1+4 t\rangle$
(c) $\mathbf{r}(t)=\langle 1+2 t, 1+2 t, 1+t\rangle$
(d) $\mathbf{r}(t)=\langle 1+2 t, 1+2 t, 1-3 t\rangle$
(e) $\mathbf{r}(t)=\langle 1+t, 1+t, 1-5 t\rangle$
(f) none of the above
2. Suppose that f is a differentiable function from \mathbf{R}^{2} to \mathbf{R}, that $f(1,2)=6$ and $\nabla f(1,2)=\langle 3,4\rangle$ where ∇f denotes the gradient of f.
(a) Find the direction and rate of maximum increase of f at the point $(1,2)$.
(b) Find the equation of the tangent plane to the graph of f at the point $(1,2,6)$.
(c) (This is a continuation of the problem on the previous page. In particular, we are assuming that $f(1,2)=6$ and $\nabla f(1,2)=\langle 3,4\rangle$.)

Find the directional derivative of f at $(1,2)$ in the direction from $(1,2)$ towards $(2,3)$.
(d) A certain unit vector \mathbf{u} makes an angle of $\frac{\pi}{3}$ with the vector $\nabla f(1,2)=\langle 3,4\rangle$. Find the directional derivative of f at $(1,2)$ in the direction \mathbf{u}.
3. Let $f(x, y)=\left((x+2 y)^{2}, x^{2} y^{4}\right)$. Compute the matrix $f^{\prime}(1,1)$.
4. Let T be the linear transformation with matrix

$$
A=\left[\begin{array}{lll}
2 & 1 & 4 \\
1 & 2 & 3
\end{array}\right]
$$

and let S be the linear transformation given by

$$
S(x, y)=(x+y, 2 x+3 y)
$$

(a) Write down the representing matrix for S.
(b) Does the composition $S \circ T$ make sense? If so, write down its representing matrix.
(c) Does the composition $T \circ S$ make sense? If so, write down its representing matrix.
5. A parallelepiped P has one vertex at the point $(1,0,1)$, and the three vertices adjacent to this vertex are at $(2,2,2),(4,1,1)$, and $(2,2,3)$. Find the volume of P.
6. Evaluate by any convenient method.

$$
\int_{-1}^{1} \int_{|y|}^{1} \cos \left(x^{2}\right) d x d y
$$

7. Convert to cylindrical coordinates. Do not evaluate.

$$
\int_{0}^{1} \int_{1}^{\sqrt{2-x^{2}}} \int_{0}^{x^{2}+y^{2}} x y d z d y d x
$$

8. Evaluate

$$
\int_{-\sqrt{2}}^{-1} \int_{-\sqrt{2-x^{2}}}^{\sqrt{2-x^{2}}} d y d x+\int_{-1}^{1} \int_{x}^{\sqrt{2-x^{2}}} d y d x
$$

(Note: You can do this problem without computation if you think geometrically.)
9. Write down an iterated integral that gives the total mass of the tetrahedron with vertices $(1,0,0),(2,0,0),(1,0,1)$ and $(1,1,0)$ if the density at each point (x, y, z) is given by $x y$. You do not have to evaluate the integral.
10. Match the following with their descriptions. You might use a description more than once.
\qquad $\varphi=\frac{\pi}{2}$ (this is in spherical coordinates)
\qquad $z=5 r$ (this is in cylindrical coordinates)
\qquad $r=2 \cos (\theta)$ (this is in cylindrical coordinates)
\qquad $\rho \cos (\varphi)=1$ (this is in spherical coordinates)
\qquad a level surface of the function $f(x, y, z)=x-y$.
\qquad a level surface of the function $f(x, y, z)=\frac{\sqrt{x^{2}+y^{2}}}{5 z}$.
(a) a cylinder (This means an actual cylinder. In particular, the cross-sections are round.
(b) a cone
(c) a plane
(d) a sphere
(e) a line
(f) a ray
11. Calculate the volume of the solid E which lies inside the sphere $x^{2}+y^{2}+z^{2}=16$ and outside the cylinder $r=4 \cos \theta$.

