Worksheet March 4

Let C_{1} be the circle $x^{2}+y^{2}=1, z=0$, and let C_{2} be the circle $x^{2}+y^{2}=1, z=2$. Assume that both circles are oriented counterclockwise when viewed from above. Let

$$
\mathbf{F}(x, y, z)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, z^{3}\right\rangle .
$$

Use two different methods to show that

$$
\int_{C_{1}} \mathbf{F} \cdot d \mathbf{r}=\int_{C_{2}} \mathbf{F} \cdot d \mathbf{r}
$$

- Method 1: Compute both line integrals and compare.
- Method 2: Let S be the cylinder $x^{2}+y^{2}=1,0 \leq z \leq 2$, with the "outward' normal. (The surface S does not contain the bottom and top disks.) Note that the boundary of S consists of the two circles above, although you need to determine whether they are oriented correctly. Then apply Stokes Theorem.

