Worksheet January 8

(1) Sketch the contour map of the function $f(x, y)=\frac{1}{x-y^{2}}$.
(2) Let $f(x, y)=3 x^{2}+4 y^{3}$.
(a) Find $\nabla f(1,1)$.
(b) Find the equation of the tangent plane to f at $(1,1,7)$.
(c) Compute the directional derivative $D_{\mathbf{u}} f(1,1)$ where $\mathbf{u}=\left\langle\frac{3}{5}, \frac{4}{5}\right\rangle$.
(d) Compute the directional derivative of f at $(1,1)$ in the direction from $(1,1)$ towards the origin.
(3) Let $f(x, y, z)=\left(3 x^{2}+4 y^{3}, x y z\right)$. Write down the derivative matrix $f^{\prime}(1,1,2)$ of f at $(1,1,2)$.
(4) Suppose $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ is a differentiable function. Write $(u, v)=f(x, y)$. Suppose

$$
f^{\prime}(2,1)=\left[\begin{array}{ll}
3 & 4 \\
2 & 5
\end{array}\right]
$$

Read off the partial derivatives $\frac{\partial u}{\partial y}, \frac{\partial v}{\partial x}$.

