Worksheet Jan 10

(1) Define $g: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $g(s, t)=\left(\ln (s t),(s+t)^{2}\right)$ and $f: \mathbf{R}^{2} \rightarrow \mathbf{R}^{2}$ by $f(x, y)=\left(e^{x y},(x+1)^{2} y\right.$. $)$
(a) Find the derivative matrix $(f \circ g)^{\prime}(1,1)$.
(b) Writing $(u, v)=f(x, y)$ and $(x, y)=g(s, t)$, read off each of the partials $\frac{\partial u}{\partial s}, \frac{\partial u}{\partial t}, \frac{\partial v}{\partial s}$ and $\frac{\partial v}{\partial t}$ at $(s, t)=(1,1)$ from your answer to part (a). (No computation needed!)
(c) Writing $v=(x+1)^{2} y$ with $x=\ln (s t)$ and $y=(s+t)^{2}$, compute $\frac{\partial v}{\partial s}$ at $(s, t)=(1,1)$ the way you learned in Math 8 (or BC calculus) and compare with your answer in (b).
(2) Let

$$
f(x, y, z)=e^{2 x}(y z+1)^{2} .
$$

Find the maximum rate of increase of f at $(0,1,1)$ and the direction in which it occurs (specified by a unit vector).

