Assignment 9

This assignment will not be collected. However, it is very important that you do the problems as this material will be emphasized on the exam.

1. Section 16.9: 18
2. Section 16.9: 24
3. Section 16.8: 17
4. Section 16.8: 18
5. Evaluate each of the following either by a direct computation or by applying Stokes' Theorem or the Divergence Theorem, as convenient.
(a) $\iint_{S}(x y \mathbf{i}+z \mathbf{j}) \cdot d \mathbf{S}$ where S is the part of the surface $x y z=1$ with $1 \leq x \leq 2,1 \leq y \leq 2$. Assume S is given the upward orientation.
(b) $\iint_{S} \mathbf{F} \cdot d \mathbf{S}$, where $\mathbf{F}=\left(x+e^{y^{2}}\right) \mathbf{i}+\mathbf{k}$ and where S is the part of the paraboloid $z=1-x^{2}-y^{2}$ that lies between the planes $z=0$ and $z=1$. Assume S is given the upward orientation.
(c) $\int_{C} e^{x^{2}} d x+x d y+x y d z$ where C is the curve of intersection of the cylinder $x^{2}+y^{2}=1$ and the plane $x+2 y+z=10$. Here C is assumed to be oriented counterclockwise when viewed from above.
6. Let $\mathbf{F}(x, y, z)=\left\langle\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}, 0\right\rangle$. (Note that you've seen this vector field before as a vector field in $\mathbf{R}^{2}-\{(0,0)\}$. We're viewing it now as a vector field defined in \mathbf{R}^{3} except on the z-axis.) Check that $\operatorname{curl} \mathbf{F}=\mathbf{0}$. Let C be any simple closed curve that encircles the z-axis once counterclockwise. Find $\int_{C} \mathbf{F} \cdot d \mathbf{r}$.
