Math 13 - Winter 2014

Homework 8

Due Wednesday, 5 Mar. 2014.

Note:

- Except for problems that are stated explicitly, all problems are from Stewart Multivariable Calculus 7th Edition.
- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your page together.

1. (3 pts) Evaluate

$$
\iint_{S} y^{2} d S
$$

where S is the part of the sphere $x^{2}+y^{2}+z^{2}=4$ that lies inside the cylinder $x^{2}+y^{2}=1$ and above the $x y$-plane.
2. (3 pts) Verify the Divergence Theorem is true for the vector field $\mathbf{F}=x^{2} \mathbf{i}+x y \mathbf{j}+z \mathbf{k}$, where E is the solid given by paraboloid $z=4-x^{2}-y^{2}$ and the $x y$-plane.
3. Carry out the following steps to evaluate

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

where $\mathbf{F}=(x+\sin z) \mathbf{i}+\left(x+e^{z^{2}}\right) \mathbf{j}+(1+z) \mathbf{k}$ and S is the hemisphere $x^{2}+y^{2}+z^{2}=1$, $z \geq 0$.
(a) (3 pts) Use the Divergence Theorem to evaluate the

$$
\iint_{S_{1}} \mathbf{F} \cdot d \mathbf{S},
$$

where S_{1} is the boundary of the half ball $x^{2}+y^{2}+z^{2} \leq 1, z \geq 0$ with positive orientation.
(b) (3 pts) Evaluate the surface integral over S_{2} (bottom surface of the half ball given in part (a))

$$
\iint_{S_{2}} \mathbf{F} \cdot d \mathbf{S},
$$

(c) (3 pts) By combining the information from part (a) and (b), Find

$$
\iint_{S} \mathbf{F} \cdot d \mathbf{S}
$$

