Math 13 - Winter 2014

Homework 5

Due Wednesday, 12 Feb. 2014.

- Except for problems that are stated explicitly, all problems are from Stewart Multivariable Calculus, 7th Edition.
- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your pages together.

1. Evaluate the double integral $\iint_{R}\left(x^{2}-x y+y^{2}\right) \mathrm{d} A$, where R is the plane region bounded by the ellipse $x^{2}-x y+y^{2}=2$, using the transformation $T(u, v)=\left[\begin{array}{l}\sqrt{2} u-\sqrt{2 / 3} v \\ \sqrt{2} u+\sqrt{2 / 3} v\end{array}\right]$.
2. Find the gradient vector field ∇f of f and sketch it if
(a) $f(x, y)=x^{2}-y$
(b) $f(x, y)=\sqrt{x^{2}+y^{2}}$
3. (a) Sketch the vector field $\mathbf{F}(x, y)=\langle y, 1\rangle$.
(b) Read problem \#35 on page 1086 of your text (Section 16.1) for the definition of a flow line. With the help of your sketch in part (a), determine an equation for the flow line of the vector field \mathbf{F} through the point $(1,-1)$.
4. Section $16.2 \# 8$.
5. Evaluate the line integral $\int_{C}(x y+z) \mathrm{d} s$ over the helix parameterized by $\mathbf{r}(t)=\langle\cos (3 t), \sin (3 t), 4 t\rangle$, $0 \leq t \leq \pi$.
6. (a) Find the mass of a wire in the shape of a circle with radius 3 and center $(0,3)$ if its linear mass density at any point (x, y) on the wire is equal to its squared distance from the y-axis.
(b) For the same wire as in part (a), determine the wire's moment of inertia about the y-axis.
