Math 13 - Winter 2014

Homework 2

Due Wednesday, 22 Jan. 2014.

Note:

- Except for problems that are stated explicitly, all problems are from Stewart Multivariable Calculus 7th Edition.
- Please show all of your work (writing a list of answers is not sufficient).
- Please indicate the people you worked with.
- Please staple your page together.

1. Let $\mathbf{v}_{\mathbf{1}}, \mathbf{v}_{\mathbf{2}}$, and $\mathbf{v}_{\mathbf{3}}$ be vectors in \mathbb{R}^{3}, where $\mathbf{v}_{\mathbf{1}}=(1,1,1), \mathbf{v}_{\mathbf{2}}=(1,1,0)$, and $\mathbf{v}_{\mathbf{3}}=$ $(1,0,0)$ and let $L: \mathbb{R}^{3} \rightarrow \mathbb{R}^{3}$ be the linear transformation such that

$$
L\left(\mathbf{v}_{\mathbf{1}}\right)=(2,-1,4), L\left(\mathbf{v}_{\mathbf{2}}\right)=(3,0,1), L\left(\mathbf{v}_{\mathbf{3}}\right)=(-1,5,1)
$$

Find the representing matrix of L, and use that matrix to find $L(2,4,-1)$.
2. Section 15.1 (p. 1005) \#4.
3. (Corrected Jan 20, 2014) If k is a constant $f(x, y)=k$, and $R=[a, b] \times[c, d]$, show that

$$
\iint_{R} k d A=k(b-a)(d-c) .
$$

4. Section 15.2 (p. 1011) \#26.
5. Section 15.3 (p. 1020) \#24.
6. In evaluating a double integral over a region D, a sum of iterated integrals was obtained as follows:

$$
\iint_{D} f(x, y) d A=\int_{0}^{2} \int_{0}^{\sqrt{y}} f(x, y) d x d y+\int_{2}^{4} \int_{y-2}^{\sqrt{y}} f(x, y) d x d y
$$

Sketch the region D and express the double integral as an iterated integral with reversed order of integration.

