Worksheet Feb 14

1. Let $C=C_{1}+C_{2}$ where C_{1} is the semicircle $x^{2}+y^{2}=1, y \geq 0$, traced from $(1,0)$ to $(-1,0)$, and C_{2} is the line segment from $(-1,0)$ to $(1,0)$. Compute

$$
\int_{C} y^{2} d x+x^{2} d y
$$

in two ways: by direct computation and by Green's Theorem.
2. Let $\mathbf{F}(x, y)=\left\langle e^{x^{4}}+y, x+y^{2}\right\rangle$.
(a) Does \mathbf{F} satisfy the condition " $\frac{\partial Q}{\partial x}=\frac{\partial P}{\partial y} "$?
(b) Do P and Q have continuous first and second order partials? (You don't have to compute them. It should be clear.)
(c) Is the domain of \mathbf{F} simply-connected?
(d) Do you have enough information to determine whether \mathbf{F} is conservative without actually trying to find a function f such that $\mathbf{F}=\nabla f$?

