Math 13: Written Homework \#8.
 Due Monday, March 4, 2013.

1. ($\S 16.6, \# 42)$ Find the surface area of the part of the cone $z=\sqrt{x^{2}+y^{2}}$ that lies between the plane $y=x$ and the parabolic cylinder $y=x^{2}$.
2. (§16.6, \#64a) Find a parametric representation for the torus obtained by rotating the circle in the $x z$-plane with center at $(b, 0,0)$ and radius $0<a<b$ about the z-axis. (See the text for a picture and a hint.)
3. ($\S 16.6, \# 64 \mathrm{c})$ Use the parametric representation from the previous problem to find the surface area of the torus described in that question.
4. $(\S 16.7, \# 4)$ Suppose that $f(x, y, z)=g\left(\sqrt{x^{2}+y^{2}+z^{2}}\right)$, where g is a function of one variable such that $g(2)=-5$. Evaluate

$$
\iint_{S} f(x, y, z) d S
$$

where S is the sphere $x^{2}+y^{2}+z^{2}=4$.
5. Evaluate the surface integral

$$
\iint_{S} \sqrt{1+x^{2}+y^{2}} d S
$$

where S is the helicoid with equation $\mathbf{r}(u, v)=\langle u \cos v, u \sin v, v\rangle$ with $u \in[0,1]$ and $v \in$ $[0, \pi]$.
6. ($£ 16.7, \# 39$) Find the center of mass of the hemisphere $x^{2}+y^{2}+z^{2}=a^{2}$ with $z \geq 0$. Assume constant density.

