Math 13 Spring 2011
 Multivariable Calculus

Exam I
Wednesday April 20, 6:00-8:00 PM

Your name (please print): \qquad
Instructor (circle one): Sutton, Yang

Instructions: This is a closed book, closed notes exam. Use of calculators is not permitted. You must justify all of your answers to receive credit, unless instructed otherwise in a given problem. On the multiple choice questions, only the answer you mark on the scantron form will be counted and justifications can be minimal.

You have two hours to work on all 16 problems. Please do all your work in this exam booklet.
The Honor Principle requires that you neither give nor receive any aid on this exam.

FERPA Waiver: By my signature I relinquish my FERPA rights in the following context: My exam may be returned en masse with others present in the classroom. I acknowledge that I understand my score may be visible to others. If I choose not to relinquish my FERPA rights, I understand that I will have to present my student ID at my instructor's office to retrieve my exam.

Signature: \qquad

Math 13 Spring 2011

Your name (please print):

Problem	Points	Score
MC	60	
13	10	
14	10	
15	10	
16	10	
Total	$\mathbf{1 0 0}$	

MULTIPLE CHOICE QUESTIONS

(1) The value of

$$
\int_{0}^{\frac{4}{\pi}} \int_{0}^{\pi} 5(x y+\pi \sin (x)) d x d y
$$

is
(a): -60
(b): -15
(c): 15
(d): 60
(2) Find the volume of the solid E bounded by $z=3+x^{2}+y^{2}$ and $z=6$.
(a): $-27 \frac{\pi}{2}$
(b): 9π
(c): $9 \frac{\pi}{2}$
(d): $\frac{3 \pi}{2}$
(3) Using polar coordinates, the integral

$$
\iint_{D}\left(x+4 y^{2}\right) d A
$$

where D is the top half of the circle of radius two centered at the origin, is equivalent to
(a):

$$
\int_{0}^{2 \pi} \int_{0}^{2} r^{2}\left(\cos (\theta)+4 r \sin ^{2}(\theta)\right) d r d \theta
$$

(b):

$$
\int_{0}^{\pi} \int_{0}^{2} r^{2}\left(\cos (\theta)+4 r \sin ^{2}(\theta)\right) d r d \theta
$$

(c):

$$
\int_{0}^{2 \pi} \int_{0}^{2} r\left(\cos (\theta)+4 r \sin ^{2}(\theta)\right) d r d \theta
$$

(d):

$$
\int_{0}^{\pi} \int_{0}^{2} r\left(\cos (\theta)+4 r \sin ^{2}(\theta)\right) d r d \theta
$$

(4) Consider the region D in the first quadrant of the $x y$-plane bounded between the lines $x=0, y=0$ and $y=-8 x+16$. Which of the following describes this region in polar coordinates.
(a): $\frac{\pi}{2} \leq \theta \leq \pi, 0 \leq r \leq \frac{16}{\sin (\theta)+8 \cos (\theta)}$
(b): $0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq \frac{16}{\sin (\theta)+8 \cos (\theta)}$
(c): $\frac{\pi}{2} \leq \theta \leq \pi, 0 \leq r \leq \frac{8}{\sin (\theta)+16 \cos (\theta)}$
(d): $0 \leq \theta \leq \frac{\pi}{2}, 0 \leq r \leq \frac{8}{\sin (\theta)+16 \cos (\theta)}$
(5) Let $\overrightarrow{\mathbf{v}}=(3,-1,2)$ and $\overrightarrow{\mathbf{w}}=(1,2,5)$, then $\overrightarrow{\mathbf{v}} \times \overrightarrow{\mathbf{w}}$ is equal to
(a): $9 \mathbf{i}+13 \mathbf{j}+7 \mathbf{k}$
(b): $9 \mathbf{i}+13 \mathbf{j}-7 \mathbf{k}$
(c): $9 \mathbf{i}-13 \mathbf{j}+7 \mathbf{k}$
(d): $-9 \mathbf{i}-13 \mathbf{j}+7 \mathbf{k}$
(6) Evaluate

$$
\iint_{D} d A
$$

where D is the region under $y=4-2 x^{2}$ in the first quadrant.
(a): $-\frac{8}{3} \sqrt{2}$
(b): $\frac{8}{3} \sqrt{2}$
(c): 0
(d): $\frac{16}{3} \sqrt{2}$
(7) By switching the order of integration then

$$
\int_{0}^{3} \int_{x}^{3} f(x, y) d y d x+\int_{-3}^{0} \int_{x}^{3} f(x, y) d y d x
$$

is equivalent to
(a):

$$
\int_{0}^{3} \int_{-y}^{y} f(x, y) d x d y
$$

(b):

$$
\int_{-3}^{3} \int_{-y}^{y} f(x, y) d x d y
$$

(c):

$$
\int_{-3}^{3} \int_{-3}^{y} f(x, y) d x d y
$$

(d):

$$
\int_{x}^{3} \int_{0}^{3} f(x, y) d x d y+\int_{x}^{3} \int_{-3}^{0} f(x, y) d x d y
$$

(8) The direction of greatest increase for $f(x, y)=x^{3} y+12 x^{2}-8 y$ at $(1,-5)$ is
(a): $\frac{(9,-7)}{\sqrt{130}}$
(b): $-\frac{(9,-7)}{\sqrt{130}}$
(c): $\frac{(9,-7)}{130}$
(d): $-\frac{(9,-7)}{130}$
(9) The volume of the region bounded by the surface $z=1+y^{2}$ and the planes $x=0, y=0, z=0$, and $x+y=1$ is
(a): $13 / 12$
(b): $7 / 12$
(c): $\pi / 12$
(d): $\sqrt{3} / 12$
(10) The value of the double integral $\iint_{R} e^{2 x^{2}+y^{2}} d A$, where $R=$ $[0,1] \times[0,2]$, lies in the interval
(a): $[0,2]$
(b): $\left[2 e^{6}, \infty\right]$
(c): $\left[2,2 e^{6}\right]$
(d): $[-e, 0]$
(11) The equation of the tangent plane to the surface $z=x^{3} y-3 y^{2}$ at the point $(1,2,-10)$ is equal to
(a): $z-10=5(x-1)+2(y-2)$
(b): $z-6 x+11 y-26=0$
(c): $z-10=2(x-1)+4(y-2)$
(d): $z-3 x+2 y-9=0$
(12) A lamina occupies the part of the disk $x^{2}+y^{2} \leq 1$ in the first quadrant. If the density at any point is proportional to its distance from the origin, then the center of mass of the lamina is
(a):
(b):
(c):
(d):

NON-MULTIPLE CHOICE QUESTIONS

(13) Suppose a mountain is described by the function $z=10 x^{2} y-$ $5 x^{2}-4 y^{2}-x^{4}-2 y^{4}$ and that you are standing at the point $(1,1,-2)$. The positive x-axis points east and the positive y axis points north. If you walk in the northeast direction what angle above the horizontal does your path make?
(14) Evaluate the integral $\int_{0}^{1} \int_{y}^{1} e^{-3 x^{2}} d x d y$.
(15) Consider the integral $\int_{0}^{1} \int_{0}^{1-x^{2}} \int_{0}^{1-x} f(x, y, z) d y d z d x$, where f is a continuous function. Rewrite this integral as an equivalent iterated integral with respect to $d z d x d y$.
(16) Find the volume bounded between the sphere of radius a centered at $(0,0,0)$ and the cone $z=\sqrt{x^{2}+y^{2}}$.
(17) Find the average value of the function $f(x, y, z)=e^{x+y}$ over the tetrahedron in 3 -space determined by the points $(0,0,0),(1,0,0),(0,1,0)$ and $(0,0,1)$.

