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Partial derivatives not only tell us the rate of change of a function f(x, y) in either
the x or y direction, they can also help us calculate objects of interest such as tangent
planes and normal lines. Furthermore, they let us calculate the gradient of f , which
allows us to easily compute directional derivatives, among other things.

1. Directional derivatives and the gradient

Let f(x, y) be a function of two variables. Then the partial derivatives fx, fy can be
interpreted as the rate of change of a function in either the x or y direction. However,
there is nothing intrinsically special about these two directions: we may just as well
ask what the rate of change of f(x, y) in some other direction is.

More specifically, suppose we want to study the rate of change of f(x, y) at a point
(a, b). A direction can be specified by giving a unit vector; this vector points in some
direction, and is uniquely determined by a direction. Let u be such a vector; we
sometimes call unit vectors in this context a direction vector. Then we can ask how
f(x, y) changes at (a, b) as we go in the direction of u. We define the directional
derivative of f(x, y) at v = (a, b) in the direction of the unit vector u to be the value
of the limit

Duf(a, b) = lim
h→0

f(v + hu)− f(v)

h
.

Partial derivatives are given by either letting u = 〈1, 0〉 or 〈0, 1〉. Intuitively, if we
think of f(x, y) as the height of a hill, then the directional derivative at (a, b) in the
direction of u is the rate at which the height increases or decreases if we walk in the
direction of u at (a, b).

How can we quickly calculate directional derivatives? To answer this question, we
introduce the gradient of a function f(x, y). The gradient of f(x, y), written∇f(x, y),
is defined to be the function

∇f(x, y) = 〈fx(x, y), fy(x, y)〉.
This is a function which has domain R2, and takes values in R2: that is, the gradient
of f is a vector-valued function defined on R2.

It turns out that directional derivatives can easily be calculated in terms of∇f(x, y):

Duf(a, b) = ∇f(a, b) · u.
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When using this formula to calculate partial derivatives, be absolutely sure that you
are using a unit vector for u.

Example. Calculate the directional derivative of f(x, y) = x2 + y2 at (4, 7) in
the direction 〈1, 2〉. Remember that when calculating directional derivatives, our
directions need to be specified by a unit vector. The unit vector that points in the
same direction as 〈1, 2〉 is 〈1/

√
5, 2/
√

5〉. The gradient of f(x, y) is ∇f = 〈2x, 2y〉.
In particular, ∇f(4, 7) = 〈8, 14〉. Then the directional derivative in question is

〈8, 14〉 · 1√
5
〈1, 2〉 =

36√
5
.

This formula also allows us to easily see two properties of the gradient vector. Since
|u| = 1 regardless of the choice of u, the directional derivative Duf(a, b) is evidently
maximized when u points in the same direction as ∇f(a, b), because

∇f(a, b) · u = |∇f(a, b)||u| cos θ = |∇f(a, b)| cos θ

which is clearly maximized when θ = 0. Furthermore, the rate of change in the
direction of maximum increase is given by |∇f(a, b)|. Therefore, we see that the
gradient vector (1) points in the direction in which a function is increasing most
rapidly, and (2) the magnitude of the gradient vector tells us the rate of this increase.

Example. Consider z = x2 + y2. At the point (2, 3), in what direction is z in-
creasing most rapidly? How rapidly is z increasing in that direction? We begin
by calculating ∇z = 〈2x, 2y〉. Therefore, ∇z(2, 3) = 〈4, 6〉. This is the direction
in which z is increasing most rapidly. Furthermore, z is increasing at a rate of
|∇z(2, 3)| =

√
42 + 62 = 2

√
13 in this direction.

2. Tangent planes and normal lines

Recall that the derivative of a single variable function f(x) can be interpreted as
the slope of the tangent line to the graph y = f(x). In particular, at x0, this tangent
line has equation

y − f(x0) = f ′(x0)(x− x0).
We seek a similar formula for the tangent plane to a graph of a function of two
variables. Intuitively, it is somewhat clear that a surface should usually have many
lines tangent to it, and perhaps less obvious that these lines will form a plane. It
turns out that if a function f(x, y) is differentiable at a point (x0, y0), then the tangent
plane is given by the equation

z − f(x0, y0) = fx(x0, y0)(x− x0) + fy(x0, y0)(y − y0).
This formula is very similar to the equation for a tangent line.

Example. Find the tangent plane to f(x, y) = xy + y2 at (1, 2). We find fx =
y, fy = x + 2y, so fx(1, 2) = 2, fy(1, 2) = 5. The equation for the tangent plane is
thus

z − 6 = 2(x− 1) + 5(y − 2).
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There is actually a more general equation for the tangent plane to a surface given
by an equation of the form F (x, y, z) = C, for some constant C. (In particular, the
case of a graph of a function f(x, y) is the special case F (x, y, z) = z − f(x, y) = 0.)
The tangent plane to F (x, y, z) = C at (x0, y0, z0) is given by the formula

Fx(x0, y0, z0)(x− x0) + Fy(x0, y0, z0)(y − y0) + Fz(x0, y0, z0)(z − z0) = 0.

In particular, notice that ∇F (x0, y0, z0) is a normal vector for this plane. This tells
us that another interpretation of ∇F is as a vector which is orthogonal to level
curves/surfaces of F .

Finally, this formula also provides us with a convenient way to calculate the normal
line to a surface, which are the lines which are orthogonal to the tangent planes of
a surface. Since ∇F (x0, y0, z0) is normal to a tangent plane, a vector equation for a
normal line is given by

〈x0, y0, z0〉+ t〈Fx(x0, y0, z0) + Fy(x0, y0, z0) + Fz(x0, y0, z0)〉.
Of course, this discussion of normal lines is valid not only for functions F (x, y, z) =

C, but also F (x, y) = C.

Examples.

• Determine the equations for the normal lines to the graph of x2 − y2 = 1
for a general point on this graph. In this situation, F (x, y) = x2 − y2, so
∇F (x, y) = 〈2x,−2y〉. Therefore, the normal line at x0, y0 is given by

〈x0, y0〉+ t〈2x0,−2y0〉.
• Consider the sphere x2 + y2 + z2 = 9. Calculate the equation for the tangent

plane and normal line to the sphere at (2, 1, 2).
We begin by calculating the gradient of f(x, y, z) = x2 + y2 + z2. We

see that ∇f = 〈2x, 2y, 2z〉. Therefore, the gradient at (2, 1, 2) is equal to
∇f(2, 1, 2) = 〈4, 2, 4〉. Therefore, the tangent plane to x2 + y2 + z2 = 9 at
(2, 1, 2) has normal vector 〈4, 2, 4〉. The equation of this plane must then be

4x+ 2y + 4z = 18, or 2x+ y + 2z = 9.

The normal line has direction vector 〈4, 2, 4〉 and passes through (2, 1, 2).
Therefore, the normal line is given by parametric equations x = 2 + 4t, y =
1 + 2t, z = 2 + 4t. Notice that this line passes through the origin.
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