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1. Vector-valued functions

A vector-valued function is a function on R which takes values in some Rn. We
usually write the independent variable as t, and then write r(t) = 〈r1(t), . . . , rn(t)〉 for
the components of the vector-valued function r. Sometimes we may write 〈x(t), y(t)〉
or 〈x(t), y(t), z(t)〉 in the cases where the function takes values in R2 or R3.

The graph of a vector-valued function will be a curve in Rn.

Examples.

• The graph of r(t) = 〈cos t, sin t〉 is the unit circle. Notice that a function
like r(t) = 〈cos 2t, sin 2t〉 has the same graph, but is a different function, so a
graph does not uniquely determine a vector-valued function.
• Suppose we are given two points r0 and r1. What is a vector-valued function

whose graph is a line segment connecting these two points? If we form the
vector r1 − r0, then one quickly sees that

r(t) = r0 + tr1 − r0 = (1− t)r0 + tr1, 0 ≤ t ≤ 1

has a graph which is the line segment connecting r0 with r1. This calculation
will be handy in the latter half of this class.
• The graph of r(t) = 〈cos t, sin t, t〉 is a helix, whose loops are separated by a

distance of 2π. Indeed, as t increases, the x, y coordinates wind around in a
circle, but the z coordinate increases at a constant, linear rate.
• What is the graph of r(t) = 〈cos t, sin t, sin 6t〉? This evidently looks like the

graph of a sine function wrapped around in a circle. How many periods (ie,
how often does the sine function repeat) in this circular loop?

We can take derivatives and integrals of vector-valued functions by taking usual
derivatives and integrals component by component. The derivative of a vector-valued
function r(t), r′(t), is useful in a variety of contexts.

For example, if r(t) describes the motion of a particle at time t, then r′(t) is the
velocity vector for that particle at time t. The speed of the particle is given by |r′(t)|
– the length of the velocity vector. Similarly, the acceleration of the particle is given
by r′′(t). We may also have occasion to use the unit tangent vector of r(t), which
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is the vector-valued function T(t) of length 1 which points in the same direction as
r′(t):

T(t) =
r′(t)

|r′(t)|
.

The derivative r′(t) also allows us to calculate the tangent line to the graph of r(t)
at various points on the curve, because this derivative is a direction vector for the
tangent line.

Example. Find parametric equations for the tangent line to r(t) = 〈t2, 2t, log t〉 at
the point (1, 2, 0). The derivative of this function is r′(t) = 〈2t, 2t(log 2), 1/t〉. The
point (1, 2, 0) is equal to r(1). Therefore, a direction vector for this tangent line is
given by r′(1) = 〈2, 2 log 2, 1〉. In particular, parametric equations for the tangent
line are given by `(t) = 〈1 + 2t, 2 + 2 log 2t, t〉.

2. Arc length

Consider the graph of a vector-valued function r(t) = 〈x(t), y(t), z(t)〉 when a ≤
t ≤ b. This is a segment of a curve, and so probably has a length. If each point
of this curve is touched exactly once by r(t), except possibly at a finite number of
points, we define the arc length of such a curve to be the value of the integral∫ b

a

√
x′(t)2 + y′(t)2 + z′(t)2 dt.

This integral has an obvious generalization to vector-valued functions that take values
in other Rn.

Example. Use the arc length integral to calculate the circumference of a unit circle.
We can choose any parameterization of the unit circle; for example, the usual param-
eterization r(t) = 〈cos t, sin t〉 works. We also need to decide the range t should fall
in to ensure that that r(t) traverses the circle exactly once. In this case, the choice
0 ≤ t ≤ 2π works. The arc length integral is then∫ 2π

0

√
(− sin t)2 + (cos t)2 dt =

∫ 2π

0

1 dt = 2π.

This is what we expect the answer to be from geometry!
The truth of the matter is that one should not generally expect to be able to eval-

uate arc length integrals exactly, because integrating a quantity under a square root
sign is usually a very difficult, if not impossible, question. For example, even in the
case of ellipses, it is in general impossible to evaluate the integrals that appear when
calculating the arc length of ellipses exactly. (Such integrals are known as ‘elliptic
integrals’ and their study was one of the most fruitful branches of mathematics in
the early 19th century.)

3. Functions of several variables

This class will be concerned with functions of several variables. Usually, their
domain will be subsets of R2 or R3, and we often write f(x, y) or f(x, y, z) for these
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functions. For now, these functions will take values in R, but we will also study vector
fields, which are functions f : R2 → R2, or f : R3 → R3.

The graph of a function f : R2 → R is a surface in three-dimensional space. In
general, it is hard to graph these functions by hand (think back to the fact that it
is not easy to even graph functions of one variable by hand), so we sometimes use
other tools to help us visualize these functions. An obvious tool is to use a graphing
calculator or computer package, but it is also important to gain a geometric intuition
for these functions without machine assistance. (Incidentally, Dartmouth offers free
downloads of Maple, a computer algebra system.)

One way of visualizing graphs z = f(x, y) is by means of plotting level curves. A
level curve of f(x, y) is just a set of points in the xy plane which satisfy an equation
f(x, y) = C, where C is some constant. If you have ever seen a topographic map
(common in hiking), the curves on these maps are level curves. Similarly, a map
of temperature with isotherms (curves where temperature is constant) is another
example of a map with level curves on it.

Examples.

• Consider the level curves of the function z2 = x2 + y2. We are plotting curves
C =

√
x2 + y2, which are circles with radius C. In particular, these level

curves are evenly spaced, in the sense that as C increments by some fixed
amount, the spacing between the level curves also increment by some fixed
amount. A plot of this graph shows that this function determines a cone
(actually, two cones).
• Consider the level curves of z = x2 + y2. This time, our level curves are the

set of points satisfying C = x2 + y2, which are circles with radius
√
C. These

level curves become more and more tightly bunched as C grows, which reflects
the fact that the value of this function changes more rapidly as we get further
from the origin.

4. Partial derivatives

What is a ‘derivative’ of a function of several variables? It turns out that the best
answer requires some knowledge of linear algebra, so we do not worry too much about
this question in this class. However, we do need to know about some of the other
candidates for derivatives of these functions.

The most straightforward of these ideas is that of a partial derivative. Given a
function f(x, y), the partial derivative of f(x, y) with respect to x is calculated by
treating y as a constant and then differentiating the function with respect to x.
Similarly, we can calculate the partial derivative of f(x, y) with respect to y. The
partial derivatives are actually defined using a limit, similar to how derivatives of
functions of a single variable are defined. We sometimes write fx or fy for partial
derivatives, and sometimes use the following analogue of Leibniz notation:

∂f

∂x
,
∂f

∂y
.

Example. Let f(x, y) = x2y + ey cosx. Then fx = 2xy − ey sinx, fy = x2 + ey cosx.
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We can also define higher order partial derivatives, such as fxx, by taking a partial
derivative of fx. Partial derivatives like fxy, where we take derivatives with respect
to different variables, are known as mixed partial derivatives. When we write fxy, we
mean the partial derivative of fx with respect to y. However, in the Leibniz notation,
the ordering of the indices is reversed:

fxy =
∂

∂y

∂f

∂x
=

∂2f

∂y∂x
.

Why do we make a fuss about the ordering of the indices? Because in general, it is
not always true that fxy = fyx! However, a theorem known as Clairaut’s Theorem
(more commonly known as Young’s Theorem) guarantees that fxy = fyx in virtually
every situation we will encounter.

Theorem. (Clairaut’s Theorem, Young’s Theorem) Let f(x, y) be defined in a disc
D containing the point (a, b), such that fxy, fyx are both continuous on D. Then
fxy(a, b) = fyx(a, b).

For a function whose mixed partials are not equal, consult Problem 95 in Chapter
15.3 of the text.

What is the geometric interpretation of partial derivatives? Just like how the
derivative of a single-variable function is the slope of the graph of a function, the
value of a partial derivative tells us the rate of change of a function as we move in
either the x or y direction. Another way of thinking about this is that the value of
fx(a, b) tells us the rate of change of the curve on the surface z = f(x, y) obtained
by looking only at points with y = b, and letting x vary, at the point x = a.

All of this discussion extends in the obvious way to functions of more than two
variables. For example, when taking the partial derivative of f(x, y, z) with respect
to x, we treat both y, z as constant, and take a derivative with respect to x.

Example. Let f(x, y, z) = 2xy+yz2+z log x. Then fx(x, y, z) = 2y+z/x, fy(x, y, z) =
2x+ z2, fz(x, y, z) = 2yz + log x.

In this class you will be taking lots of partial derivatives, so make sure you become
accurate and fairly quick at it!
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