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1. The Divergence Theorem and physics

The Divergence Theorem is also a very useful mathematical tool in electromag-
netism. Recall that if we place a particle of charge Q at the origin of R3, the electric
field it generates can be described by the equation

E =
Q

d3
d,

where d is the vector 〈x, y, z〉. One can directly check that ∇ · E = 0 at every point
except the origin, where ∇ · E is not defined, since E is not defined there.

Suppose we want to calculate the flux of the electric field generated by such a
charge across a closed surface S whose interior E contains the origin. We cannot
apply the divergence theorem directly to E, because E is not defined at every point
of E (recall that we need E to be C1 at every point of E, which it cannot be if
E is not even defined at every point of E). However, we can apply the divergence
theorem to the solid E ′ we obtain by cutting out a little sphere centered at the
origin. Strictly speaking, using the divergence theorem as we stated it requires that
the boundary of E ′ consist of one piece, but we can circumvent this by cutting E ′

up into several pieces and applying the divergence theorem to each. (The same trick
works with Greens’ Theorem.) In any case, the boundary of E ′ consists of S (with
outward orientation) together with the small sphere, which we’ll call S ′. Notice that
S ′ has orientation pointing towards the origin, because the boundary of E should
have orientation pointing out from E.

It’s probably not possible to evaluate the flux of E across the surface S, which
could have an irregular shape, but it is easy to calculate the flux of E across S ′.
Since the boundary of E ′ consists of S and S ′, and ∇ · E = 0 on E ′, the divergence
theorem tells us∫∫

S

E · n dS +

∫∫
S′

E · n dS =

∫∫∫
E′

∇ · E dV =

∫∫∫
E′

0 dV = 0.

Therefore, if we can calculate the flux of E across S ′, we will know what the flux of
E across S is.

Since S ′ is a sphere, the unit normals for S ′ have a simple form. Suppose S ′ has
radius r. Recall that if d = 〈x, y, z〉, then the unit normal to S ′ at d is equal to
−d/|d|. (The negative sign appears since S ′ has orientation pointing inwards, and d
is evidently orthogonal to S ′ at the point d.) Therefore,
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E · n =
Q

d3
d · − d

|d|
=
−Q
d2

=
−Q
r2

.

On the other hand, S ′ is a sphere of radius r, so we have∫∫
S′

E · n dS =

∫∫
S′

−Q
r2

dS =
−Q
r2

∫∫
S′

dS =
−Q
r2

4πr2 = −4πQ.

This tells us that ∫∫
S

E · n dS = −
∫∫
S′

E · n dS = 4πQ.

In other words, the electric flux through a closed surface S does not depend on the
shape of S, but only on whether it contains the origin or not.

On the other hand, if S does not contain the origin, then we can directly apply the
divergence theorem to the divergence-free vector field E on the interior of S, and we
see that ∫∫

S

E · n dS = 0.

Because the electric field of several charges is additive, we have shown that the flux
of an electric field E generated by some charge distribution across a surface S is given
by the formula ∫∫

S

E · n = 4πQin,

where Qin is the total amount of charge enclosed by S. This is sometimes known as
Gauss’ Law. Remember that this formula only holds for the electric field generated
by some stationary charge distribution, so it will not apply in most situations in this
class (because most vector fields we examine do not arise as an electric field generated
by some charge distribution), but when studying electromagnetism, many of the
questions deal precisely with the electric field generated by some charge distribution.

Example. As an application of Gauss’ Law, consider the following question. Suppose
we have an infinite sheet of charge, with uniform density 1, on the xy plane. What
is the strength of the electric field at an arbitrary point (x, y, z)?

We will use Gauss’ Law, in combination with simple geometric symmetry argu-
ments, to determine the electric field that this distribution of charge generates. (The
direct way to calculate an electric field generated by some charge distribution is to
sum the contribution of each charge, which in this case would involve calculating
an integral since we have a continuous as opposed to discrete charge distribution.)
First, notice that E must be of the form 〈0, 0, f(z)〉 for some function f which only
depends on z; the reason this is true is because of symmetry. There should be no
x or y component because any contribution to the x component and y component
of the electric field from a point (x, y, 0) will be cancelled out by the contribution
from (−x,−y, 0). Furthermore, every point with the same z coordinate will have the



MORE DIVERGENCE THEOREM, STOKES’ THEOREM 3

same electric field because the plate of charge is infinite and symmetric in the x, y
directions.

With this in mind, let’s examine a box whose vertices are (±a,±b,±c). On the
one hand, this box encloses (2a)(2b) = 4ab units of charge. On the other hand, the
electric flux through this box is given by the sum of the electric fluxes through the
top and bottom (the faces with z = ±c), because the flux through the other four
sides equals 0. The flux through the top is given by 4f(c)ab, so altogether the flux
through this box is given by 8f(c)ab. (I did this calculation incorrectly in class, since
I mis-calculated the area of the top of the box!) Therefore, Gauss’ Law tells us

8f(c)ab = 16πab⇒ f(c) =
1

2π
.

Interesting enough, the strength of the electric field does not depend on the distance
from the plate at all!

Another application of the Divergence Theorem to physics is that it relates the
integral form of Gauss’ Law to the differential form of Gauss’ Law. Gauss’ Law as
we’ve described it is in the integral form∫∫

S

E · n dS = 4πQin.

The Divergence Theorem tells us that the left hand side is also equal to∫∫∫
E

∇ · E dV = 4πQin.

On the other hand, we can write Qin as the integral of the charge density function
over E. Therefore, ∫∫∫

E

∇ · E dV = 4π

∫∫∫
E

ρ dV,

where ρ is the charge density function which describes a distribution of charge. The
only way this formula can be true for every solid E is if ∇ ·E = 4πρ, which is one of
Maxwell’s Equations. Hopefully these examples suggest why the Divergence Theorem
is a tool of fundamental mathematical importance in classical electromagnetism.
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