
FLUX, ORIENTATION OF SURFACES
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When evaluating surface integrals of scalar functions, the (absolute value of the)
fundamental vector product ru × rv played the role of an area expansion factor, and
appeared in the formula we use to directly compute surface integrals. In preparation
for understanding how to calculate surface integrals of vector fields, we examine the
geometric properties of ru × rv more closely.

1. The tangent plane to a parametric surface

Recall that the tangent plane to a surface given by an equation f(x, y, z) = C at
the point (a, b, c) has the form

fx(a, b, c)(x− a) + fy(a, b, c)(y − b) + fz(a, b, c)(z − c) = 0,

and this formula arose from the fact that the gradient ∇f is orthogonal to level
surfaces.

Suppose we are given a surface S using a parametric function r(u, v) = 〈X(u, v), Y (u, v), Z(u, v)〉,
instead of an implicit function f(x, y, z) = C. It might be difficult to find a function
f which describes S, so we want to be able to compute the tangent plane to S at a
point r(u0, v0) directly from r.

This is actually not too hard to do, and in a sense we already know how to do it.
Suppose we want to determine an equation for the tangent plane to S at the point
r(u0, v0). If we fix v = v0, and let u vary, the function r(u, v0), just as a function of
u, traces out a curve on S which passes through r(u0, v0). Furthermore, the tangent
vector to this function at r(u0, v0) lies on the tangent plane we are interested in. This
tangent vector evidently is equal to ru(u0, v0). In a similar fashion, if we fix u = u0,
and let v vary, the tangent vector to this curve at r(u0, v0) is equal to rv(u0, v0).

In ‘most situations’, ru(u0, v0) and rv(u0, v0) will not be parallel to each other, so
their cross product (which is the fundamental vector product) will be nonzero and
orthogonal to both of them. In particular, this tells us that ru × rv is orthogonal to
the tangent plane to S at r(u0, v0). With this information, we can easily determine
an equation for the tangent plane, since we have a normal vector for the plane, as
well as a point which the plane passes through.

Examples.
1
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• Let r(u, v) = 〈u, v, u2 + v2〉 be a parameterization for the paraboloid z =
x2 + y2. Recall (from last class) that the fundamental vector product for this
parameterization is given by

ru × rv = 〈−2u,−2v, 1〉.
Therefore, the tangent plane to this paraboloid at r(u, v) has normal vector
〈−2u,−2v, 1〉 and passes through the point (u, v, u2 + v2). This plane has
equation

−2ux− 2vy + z = −u2 +−v2.
For example, at (2, 3, 13), this tangent plane is

−4x− 6y + z = −13.

Notice that if we used the formula with the gradient of z − x2 − y2, we get
the equation

−2x0(x− x0) +−2y0(y − y0) + (z − z0) = 0,

which at (2, 3, 13) is

−4(x− 2)− 6(y − 3) + (z − 13) = 0, or − 4x− 6y + z = −13.

2. The flux across a plane

Suppose we have a vector field F in R2 which describes the speed of motion of a
fluid of uniform density 1 in the xy plane. For now, let F(x, y) = 〈2, 0〉, for example,
so that the fluid is moving to the right at a rate of 2 units per second. Suppose we
place a net, represented by the line segment from (0, 0) to (0, 1), in this fluid. Then
we might ask, how much fluid passes through the net per unit time?

Intuitively, it seems clear that the amount of fluid passing through the net should
be equal to the length of net times the density times the rate at which the fluid is
moving. Indeed, in one second, all the fluid from x = −2 to x = 0, with 0 ≤ y ≤ 1,
will pass through the net.

Now suppose the fluid flows at a constant rate in a uniform direction, but this
direction is no longer perpendicular to the net. For example, if F(x, y) = 〈0, 1〉, how
much fluid passes through the net? In this case, the fluid flow is vertical, but the net
is also vertical (and we assume infinitely thin), so no fluid passes through the net.
Evidently the orientation of the motion of the fluid relative to the net impacts how
much of the fluid passes through the net.

In the first example, the motion of the fluid is perpendicular to the net, while in
the second it is parallel. Another way of rephrasing this is as follows: suppose we
take a unit normal vector to the net, say n. For example, we can choose n = 〈1, 0〉
for every point on the net, since the net is vertical. Then in the first example, the
fluid flow is parallel to n, while in the latter example, it is orthogonal to n.

Suppose the fluid flow F, which we still assume to be uniform in one direction, is
now oriented at an angle of θ from n. Then how much fluid passes through the net
in one second? Notice that we can resolve the vector F into a component parallel to
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n and a component orthogonal to n. A formula from vector geometry (see Chapter
13) tells us that the component parallel to n is given by

(F · n)n.

(We use the fact that n is of unit length to simplify the appearance of this formula.)
The component of the fluid flow which is orthogonal to n evidently contributes noth-
ing to the amount of fluid passing through the net; only the part of the motion which
is parallel to n will contribute. But we already saw that this is equal to the length
of (F · n)n times the density times the length of the net. One interpretation of F · n
is that it is equal to |F||n| cos θ = |F| cos θ, where θ is the angle between F and n.
In other words, the larger the angle between F and n, the smaller the proportion of
fluid which flows through the net.

This calculation explains why, on average, parts of the Earth at higher latitude
are colder than parts of the Earth near the equator. At high latitudes, the sun stays
low on the horizon (for example, at the north pole, the sun never goes above 23.5◦

degrees over the horizon), so the solar energy of the sun, which can be interpreted as
a vector field of uniform magnitude and direction to a first approximation, hits the
surface of the Earth at an inclined angle. The total solar energy absorbed by a patch
of land of unit area will then be lower at high latitudes, since F · n will be smaller,
than at low latitudes.

This same principle works for vector fields F in R3, with a two-dimensional net S.
We take a unit normal vector to S, say n. Since S is assumed to be part of a plane,
n will be constant over S. Also, assume that F is constant. Then the quantity

(F · n)A(S),

which is equal to the component of F in the direction of n times the area of S, is
called the flux of F across S. Because F,n are assumed to be constant right now,
another way of writing this is as a surface integral∫∫

S

F · n dS.

Example. Calculate the flux of F = 〈1, 1, 1〉 across the surface S given by 0 ≤ x ≤
1, 0 ≤ y ≤ 2, z = 0.

We begin by finding a unit normal to S. Since S lies in the xy plane, a unit normal
is given by either 〈0, 0, 1〉 or 〈0, 0,−1〉. Let’s choose n = 〈0, 0, 1〉. Then F · n = 1,
and the flux is equal to 1(2) = 2. If we had chosen n = 〈0, 0,−1〉, notice that we
would have obtained the value −2 instead.

3. Orientation of surfaces

The last example illustrates that we need to be more specific when we want to
calculate the flux of a vector field across a surface. At any given point, there are
going to be two choices of unit normal vectors to a surface S, which point in opposite
directions. If we want to calculate the flux of F across S, we will need to specify
some choice of n to avoid any ambiguity in the final sign of the answer.

http://en.wikipedia.org/wiki/Insolation
http://en.wikipedia.org/wiki/Insolation
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This is analogous to the situation with line integrals, where we need to specify
an orientation of a curve C to actually calculate a line integral. If we reverse the
orientation of a curve on a line integral, the sign changes, just like how if we reverse
the sign of the unit normal vector n used when calculating the flux, the sign of the
flux changes.

Therefore, if we want to calculate the flux of F across a surface S, we should also
specify a choice of unit normal vector n at every point of S. Furthermore, we want
this choice of n to be continuous: that is, we do not want n to ‘flip’ to the opposite
direction anywhere on S.

When S is part of a plane, it is clear that there are two possible choices for n,
and that choosing one of them over the other gives a continuous choice of n for every
point of S. If S is not part of a plane, then n varies with S, but we still should be
able to choose n at every point of S in such a way so as to ensure that n is continuous
on S.

For example, if S is a sphere, we can either choose n to point inwards towards the
origin, or outwards away from the origin. We can choose n to be pointing inwards
at every point of S, and this choice gives a continuous choice of n. Alternatively, we
can choose n to be pointing outwards at every point of S and this choice also gives
a continuous choice of n. What we do not want to do is choose n to be pointing
inwards at some points of S and outwards at other points of S, since then we would
need n to suddenly flip direction somewhere. A continuous choice of n on S will be
called an orientation of S.

If you think about various examples of surfaces, you will probably notice that in
each example, there are two possible choices for n to ensure that n is continuous on
S, that these choices point in opposite directions. It may come as a bit of a surprise
that there are surfaces for which it is impossible to choose n in such a way so as to
ensure that n is continuous on S.

The canonical example of such a surface is the famous Mobius strip. This is
constructed by taking a strip of paper, twisting one end by 180◦, and then gluing the
edges together. If you try to choose n for this strip in a continuous fashion, you will
find that this is impossible, because if you start at a point and then move in a circle
along the strip, you will end up at the same point but on the other side of the strip!

We want to rule out surfaces such as this. Surfaces for which there is no continuous
choice of n are called non-orientable, while surfaces for which such a choice exists
are called orientable. In practice, every surface we encounter will be orientable. If S
happens to be a closed surface – that is, a surface with no boundary, like a sphere
– the convention is that the preferred orientation of a closed surface is that which
points outwards. This orientation is sometimes referred to as the positive orientation
of a closed surface, much like how the counterclockwise orientation of a simple closed
curve is called its positive orientation.

In summary, if we want to calculate the flux of a vector field F across a surface S,
we also need to specify an orientation for S, which amounts to a choice of n. There
are evidently two orientations for S, pointing in opposite directions.

http://en.wikipedia.org/wiki/Orientability
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