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1. A differential criterion for conservative vector fields

We would like to be able to determine whether F is conservative without too much
difficulty. However, the path-independence property for conservative fields does not
help at all with this problem, since in practice it is impossible to check that an
integral is independent of path for EVERY choice of starting and end point and
EVERY choice of path connecting these two points. In one example we saw how we
could try to calculate ‘partial integrals’ to either find a potential function, or rule out
its existence. However, this requires calculating integrals, which in general can be a
fairly difficult problem.

In an earlier example, we showed that a field was not conservative by assuming that
it was, and then showing that this led to a contradiction. More specifically, suppose
F = 〈P,Q〉 is conservative, so that F = ∇f , and make the additional assumption that
F is C1; ie, P, Q have continuous first-order partial derivatives. Then fx = P, fy = Q,
and we can apply Clairaut’s Theorem to conclude that fxy = Py = fyx = Qx. In
other words, if F = 〈P,Q〉 is conservative and C1, then

∂P

∂y
=
∂Q

∂x
.

Any conservative vector field satisfies the above property, which only involves taking
derivatives, not integrals. As such, this looks like it is a better test for whether a
vector field is conservative or not than anything else we know. However, there is one
major problem: not every field which passes this test is conservative! In other words,
if Py 6= Qx for even one point in D, then we know that F is not conservative on
D, but even if Py = Qx everywhere on D, we cannot necessarily conclude that F is
conservative.

Example. (This is Problem #33 from Chapter 17.3, but the example is so classical
that it appears in many sources.) Let F(x, y) be defined by

F =
−yi + xj

x2 + y2
.

This vector field is defined on every point of R2 except the origin. Its coordinate
functions are defined by
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P (x, y) =
−y

x2 + y2
, Q(x, y) =

x

x2 + y2
.

If we calculate Py, Qx, we find they are equal:

Py =
−(x2 + y2) + 2y2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
, Qx =

(x2 + y2)− 2x2

(x2 + y2)2
=

y2 − x2

(x2 + y2)2
.

On the other hand, if we let C be the path given by r(t) = 〈cos t, sin t〉, 0 ≤ t ≤ 2π
– namely, the closed path given by the unit circle in the counterclockwise direction,
then the integral of F along C is equal to∫

C

F · dr =

∫ 2π

0

〈− sin t, cos t〉 · 〈− sin t, cos t〉 dt =

∫ 2π

0

1 dt = 2π 6= 0.

Therefore, this vector field is not path-independent, and hence is not conservative on
D, even though Py = Qx.

However, it turns out there is still a way to partially salvage this criterion for being
a conservative vector field. A closed curve C is called a simple closed curve if it
does not intersect itself anywhere; in terms of a parameterization r(t), a ≤ t ≤ b, this
means that r(t1) 6= r(t2) for any t1 6= t2 except at t1 = a, t2 = b or vice versa. A simple
closed curve splits up R2 into a region contained in the curve and a region outside the
curve; both these regions are connected. (Even though this seems obvious, proving
that this is true is not easy and was not done until the 19th century by Camille
Jordan!)

A connected set D is called simply connected if, given any simple closed curve
lying in D, the interior of that curve only contains points in D. Another alternate
definition is that a set D is simply connected if, given any closed curve in D, it is
possible to continuously shrink the curve D to a point with out ever leaving the set
D. In both these definitions, the intuitive idea behind a simply connected set is that
it is a set with no holes in it. We have no tools for rigorously showing that a set is
simply connected or not, but in practice it is usually easy to ‘intuitively see’ if a set
is simply connected. (If you want to learn how to make your intuition precise, a good
place to start is to take a topology class.)

Examples.

• The set x2 + y2 < 1 is simply connected; intuitively it has no holes.
• The set D equal to R2 − (0, 0); ie, the plane with the origin removed, is not

simply connected, because of the hole at the origin. For example, the curve
C we looked at in the previous example is a simple closed curve lying entirely
in D, but its interior contains a point not in D.
• The annulus 1 ≤ x2+y2 ≤ 4 is not simply connected. Any circle going around

the annulus will contain points which are not in the annulus itself.

In the example above where Py = Qx, yet F = 〈P,Q〉 was not a conservative vector
field, we saw that F was only defined on a set D which was not simply connected.
It turns out that if Py = Qx is true for all points D on an open, simply-connected
region, then F is conservative!

http://en.wikipedia.org/wiki/Jordan_curve_theorem
http://en.wikipedia.org/wiki/Simply_connected
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Theorem. Let F = 〈P,Q〉 be a C1 vector field on an open, simply-connected set D.
If Py = Qx for all points in D, then F is conservative.

2. Green’s Theorem

We now discuss a theorem which connects double integrals with line integrals.
Recall that a simple closed curveis a closed curve which does not intersect itself. Let
C be a simple closed curve lying in R2. Then the positive orientation of C is defined
to be the orientation of C we obtain by moving in single counterclockwise loop along
C. An alternate definition is that if we walk in the direction of the positive orientation
for C, the interior of C is always on our left-hand side. The negative orientation of
C is the opposite orientation of the positive orientation for C.

Theorem. (Green’s Theorem) Let C be a positively oriented, piecewise smooth,
simple closed curve in R2. Let D be the region bounded by C. If F = 〈P,Q〉 is a C1

vector field on D, then ∫
C

F · dr =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

An alternate formulation of Green’s Theorem is∫
C

P dx+Qdy =

∫∫
D

(
∂Q

∂x
− ∂P

∂y

)
dA.

• We will not prove Green’s Theorem, or give an indication of how the proof
goes yet, but we will see how it is a consequence of a more general theorem
we will study in a few weeks.
• Green’s Theorem should be philosophically interpreted as a higher-dimensional

analogue of the FTC. The usual FTC relates the value of a double integral
over an interval to the value of its antiderivative at the endpoints, which is
also the boundary, of that interval. Green’s Theorem relates the value of the
double integral of the expression Qx−Py over a region D to a line integral of
a related function (which may not look like an antiderivative, but certainly
involves ‘partial integrals’ of Qx, Py) over the boundary of D.
• Green’s Theorem can sometimes act as a bridge between line integrals and

double integrals. For example, it may be difficult or tedious to evaluate a
certain line integral, but an application of Green’s Theorem might convert
that line integral into a double integral which is easier to evaluate. Conversely,
a double integral which might look difficult to evaluate can sometimes be
converted to a line integral which is easier to evaluate, although this is slightly
more difficult to do.
• The strategy of when to use Green’s Theorem: In general, if you have to

evaluate a line integral over a rectangle, or the boundary of some other simple
two-dimensional region which consists of several different pieces, using Green’s
Theorem will usually simplify your calculation. Calculating a line integral over

http://en.wikipedia.org/wiki/Curve_orientation
http://en.wikipedia.org/wiki/Green's_theorem
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a rectangle involves breaking up that rectangle into its four sides, separately
calculating parameterizations for each side, and then calculating four different
line integrals. However, an application of Green’s Theorem will convert the
line integral into a single double integral over a rectangle, which usually is
easy to do.

Line integrals over regions like circles may or may not be simplified using
Green’s Theorem. It depends on the vector field being integrated. If you
find you are having difficulty evaluating a certain line integral because the
resulting integrand is excessively complicated, try using Green’s Theorem to
see if you get a simple double integral.

Examples.

• Let F = 〈y cosx, x2〉, and let C be the boundary of the square R, given by
0 ≤ x ≤ 1, 0 ≤ y ≤ 1 with positive orientation. Evaluate

∫
C
F · dr.

If you wanted to, you could split C up into its four sides, parameterize
each side, and then evaluate the line integral along each side, but that’s a lot
of work. If you apply Green’s Theorem, with P = y cosx, Py = cosx,Q =
x2, Qx = 2x, then we get

∫
C

F·dr =

∫∫
R

Qx−Py dA =

∫ 1

0

∫ 1

0

2x−cosx dy dx =

∫ 1

0

2x−cosx dx = x2−sinx
∣∣∣1
0

= 1−sin 1.

• Let F = 〈−y3+log(2+sinx), x3+arctan y〉, and let C be the circle x2+y2 = 1
with counterclockwise orientation. Evaluate

∫
C
F · dr.

If you try to directly calculate this line integral, you will have a really diffi-
cult time because the resulting integral in the parameter t will be a complete
mess. If you try to evaluate this integral using the fundamental theorem for
line integrals you will also fail, because F is not conservative. Therefore, you
should try Green’s Theorem.

Since P = −y3 + log(2 + sin x), Py = −3y2. Similarly, Qx = 3x2, so Green’s
Theorem says∫

C

F · dr =

∫∫
D

Qx − Py dA =

∫∫
D

3x2 + 3y2 dA,

where D is the disc x2 +y2 ≤ 1. This looks like an integral we should evaluate
using polar coordinates. If we convert this double integral to polar coordinates
we get

∫∫
D

3x2 + 3y2 dA =

∫ 2π

0

∫ 1

0

3r2r dr dθ =

∫ 2π

0

3/4 dθ =
3π

2
.

• An interesting application of Green’s Theorem is to the calculation of areas of
two-dimensional regions. Recall that the area of a region D can be expressed
as the value of the double integral

∫∫
D

dA. If we select P,Q such that Qx−Py =
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1, then
∫
C
P dx+Qdy will also equal the area of D, where C is the boundary

of D with positive orientation.
For example, selecting Q = x, P = 0 yields the equation A(D) =

∫
C
x dy.

Selecting Q = 0, P = −y, or Q = x/2, P = −y/2 gives the equations

A(D) = −
∫
C

y dx =
1

2

∫
C

x dy − y dx.

Let us apply this to the calculation of the area of an ellipse (which we
already know how to do using other means). Suppose D is the region x2/a2 +
y2/b2 ≤ 1; this is the region enclosed by an ellipse with axes of length 2a, 2b.
The boundary C of D is parameterized by r(t) = 〈a cos t, b sin t〉, 0 ≤ t ≤ 2π.
If we use the last of the expressions for the area of D, we get

A(D) =
1

2

∫
C

x dy−y dx =
1

2

∫ 2π

0

(a cos t)(b cos t)−(b sin t)(−a sin t) dt =
1

2

∫ 2π

0

ab dt = πab.

• (Exercise 17.5.21 of the textbook) This problem from the textbook gives a
neat application of Green’s theorem to the problem of calculating the volume
of a polygon. More specifically, the problem describes a simple formula for
the volume of a polygon in terms of the coordinates of the vertices of the
polygon. The problem consists of two parts (really three, but the last part is
not as interesting): first, show that if C is the line segment from (x1, y1) to
(x2, y2), then ∫

C

x dy − y dx = x1y2 − x2y1,

and then if (x1, y1), . . . , (xn, yn) are the vertices of a polygon, listed in coun-
terclockwise order, then its area A is equal to

A =
1

2
((x1y2 − x2y1) + (x2y3 − x3y2) + . . .+ (xny1 − x1yn)).

We first find a parameterization for C. For example, r(t) = 〈x1(1 − t) +
x2(t), y1(1− t) + y2t〉, 0 ≤ t ≤ 1, works. This choice of parameterization has

x′(t) = x2 − x1, y′(t) = y2 − y1,
so the line integral in question is equal to

∫ 1

0

(x1(1− t) + x2(t))(y2 − y1)− (y1(1− t) + y2t)(x2 − x1) dt

If you expand the terms in the integrand, you will find that all the terms with
coefficient t cancel out, and there is also some cancellation in the constant
terms. The end result is∫ 1

0

(x1y2 − x2y1) dt = x1y2 − x2y1,

as desired.
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For the second part, recall that if we have a positively oriented simple closed
curve C enclosing a region D, the area of D is given by the expression

1

2

∫
C

x dy − y dx.

(This was an application of Green’s Theorem where we chose P,Q in a special
way to get Qx − Py = 1.) In this problem, if we let Ci be the segment from
(xi, yi) to (xi+1, yi+1) (if i = n, we let xn+1 = x1, yn+1 = y1), then C is the
same path as C1, C2, . . . , Cn in succession. Therefore,∫
C

x dy − y dx =

∫
C1

x dy − y dx+

∫
C2

x dy − y dx+ . . .+

∫
Cn

x dy − y dx.

If we replace each line integral on the right hand side with the corresponding
term we get from part (a), and then multiply by 1/2, we get the desired result.

As an example, consider the triangle with vertices at (0, 0), (4, 3), (5, 2).
Then an application of this formula gives an area of 7/2. This method of
calculating the area is easier than using the basic formulas from Euclidean
geometry (though possible; give it a try!). Also, if you are attentive, you will
notice that in this example, the formula reduces to essentially the formula for
the area of a parallelogram in terms of the determinant of a 2× 2 matrix.
• Suppose F = 〈P,Q〉 is conservative on D. Then Py = Qx, so an application

of Green’s Theorem gives∫
C

F · dr =

∫∫
D

Qx − Py dA =

∫∫
D

0 dA = 0.

This is exactly as we expect by the FTC for line integrals, so in some sense
Green’s Theorem is a generalization of the FTC for line integrals, at least for
regions D enclosed by simple closed curves.
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