Paths, Curves and Arc Length

January 17, 2006

Definition of a path

Let $I=[a, b]$ be a closed interval for some numbers $a<b . I \subseteq \mathbb{R}$.

Definition: A path in \mathbb{R}^{n} is a continuous function $\mathrm{x}: I \rightarrow \mathbb{R}^{n}$ where $\mathrm{x}(a)$ and $\mathrm{x}(b)$ are the endpoints of the path x .

Velocity, speed and acceleration

Let $\mathrm{x}: I \rightarrow \mathbb{R}^{n}$ be a differentiable path. Then

- The velocity $\mathbf{v}(t)=\mathrm{x}^{\prime}(t)$.
- The speed is $\|\mathbf{v}(t)\|$.
- The acceleration is $\mathbf{a}(t)=\mathrm{v}^{\prime}(t)=\mathrm{x}^{\prime \prime}(t)$.

Parametric equation of the tangent line

Let $\mathbf{x}: I \rightarrow \mathbb{R}^{n}$ be a path and $\mathbf{v}\left(t_{0}\right) \neq \mathbf{0}$.
Then the parametric equation of the tangent line at t_{0} to the path \mathbf{x} is

$$
\mathbf{l}(t)=\mathbf{x}\left(t_{0}\right)+\left(t-t_{0}\right) \mathbf{v}_{0}
$$

Length of a path

Definition: The length $L(x)$ of a differentiable path $\mathrm{x}:[a, b] \rightarrow \mathbb{R}^{n}$ is the integral of its speed

$$
L(\mathbf{x})=\int_{a}^{b}\left\|\mathbf{x}^{\prime}(t)\right\| d t
$$

