Surface Integrals

February 27, 2006

Standard Normal Vector

Given $\mathbf{X}(s, t)=(x(s, t), y(s, t), z(s, t))$, we have two tangent vectors:

$$
\begin{aligned}
& \mathbf{T}_{s}=\frac{\partial \mathbf{T}}{\partial s}=\left(\frac{\partial x}{\partial s}, \frac{\partial y}{\partial s}, \frac{\partial z}{\partial s}\right) \\
& \mathbf{T}_{t}=\frac{\partial \mathbf{T}}{\partial t}=\left(\frac{\partial x}{\partial t}, \frac{\partial y}{\partial t}, \frac{\partial z}{\partial t}\right)
\end{aligned}
$$

Then the standard normal vector is

$$
\mathbf{N}=\mathbf{T}_{s} \times \mathbf{T}_{t}
$$

Smooth Surfaces

A parametrized surface S is smooth at a point $\mathbf{X}\left(s_{0}, y_{0}\right)$ if \mathbf{X} is C^{1} in a neighborhood of (s_{0}, t_{0}) and if

$$
\mathbf{N}\left(s_{0}, y_{0}\right)=\mathbf{T}_{s} \times \mathbf{T}_{t} \neq \mathbf{0}
$$

Surface Area

Surface area of $S=\iint_{D}\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t$.

Scalar Surface Integral

The scalar surface integral of a continuous function f along a smooth parametrized surface $\mathbf{X}(s, t)$ over a bounded region D is

$$
\begin{aligned}
\iint_{\mathbf{X}} f d S & =\iint_{D} f(\mathbf{X}(s, t))\left\|\mathbf{T}_{s} \times \mathbf{T}_{t}\right\| d s d t \\
& =\iint_{D} f(\mathbf{X}(s, t))\|\mathbf{N}(\mathbf{s}, \mathbf{t})\| d s d t
\end{aligned}
$$

Vector Surface Integral

The vector surface integral of a continuous vector field $\mathrm{F}(x, y, z)$ along a smooth parametrized surface $\mathbf{X}(s, t)$ over a bounded region D is

$$
\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}=\iint_{D} \mathbf{F}(\mathbf{X}(s, t)) \cdot \mathbf{N}(s, t) d s d t
$$

where $\mathbf{N}(s, t)=\mathbf{T}_{s} \times \mathbf{T}_{t}$.

Orientation of a surface

A smooth orientable surface is a surface S that has a tangent plane at every point (x, y, z) on S (except boundary points) and at each point there are two normal vectors \mathbf{N} and $-\mathbf{N}$. In other words the surface has two sides. The choice of \mathbf{N} gives S an orientation.

REMARK: The Möbious strip is an example of an nonorientable surface, it has only one side. We can only define the surface integrals for orientable surfaces!

Scalar Surface Integrals are independent of parametrization

Theorem: Let $\mathbf{X}: D_{1} \rightarrow \mathbf{R}^{3}$ be a smooth parametrized surface and f any continuous function with domain containing $\mathbf{X}\left(D_{1}\right)$. If Y is a smooth reparametrization of X, then

$$
\iint_{\mathbf{Y}} f d S=\iint_{\mathbf{X}} f d S .
$$

Vector Surface Integrals and Reparametrizations

Let Y be a reparametrization of the smooth orientable surface X. Then

- If \mathbf{Y} is orientation preserving, then

$$
\iint_{\mathbf{Y}} \mathbf{F} \cdot d \mathbf{S}=\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}
$$

- If \mathbf{Y} is orientation reversing, then

$$
\iint_{\mathbf{Y}} \mathbf{F} \cdot d \mathbf{S}=-\iint_{\mathbf{X}} \mathbf{F} \cdot d \mathbf{S}
$$

