# Introduction to vectors 

January 4, 2006

## Vectors in $\mathbb{R}^{n}$

In this class a scalar is simply a real number. An element in $\mathbb{R}$.

A vector in $\mathbb{R}^{2}$ is a pair $(x, y)$ of real numbers.

A vector in $\mathbb{R}^{3}$ is a triple $(x, y, z)$ of real number.

A vector in $\mathbb{R}^{n}$ is an $n$-tuple $\left(x_{1}, x_{2}, \ldots, x_{n}\right)$ of $n$ real numbers.

## Operations on vectors

Vector Addition: Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, \ldots, b_{n}\right)$ in $\mathbb{R}^{n}$ then their sum is

$$
\mathbf{a}+\mathbf{b}=\left(a_{1}+b_{1}, a_{2}+b_{2}, \ldots, a_{n}+b_{n}\right)
$$

Scalar Multiplication: Let $\mathbf{a}=\left(a_{1}, a_{2}, \ldots, a_{n}\right)$ be a vector in $\mathbb{R}^{n}$ and $k$ any scalar then

$$
k \mathbf{a}=\left(k a_{1}, k a_{2}, \ldots, k a_{n}\right)
$$

## The standard basis vectors

The standard basis vectors in $\mathbb{R}^{2}$ are $\mathbf{i}=(1,0)$ and $\mathbf{j}=(0,1)$.

The standard basis vectors in $\mathbb{R}^{3}$ are $\mathbf{i}=(1,0,0)$ and $\mathbf{j}=(0,1,0)$ and $\mathbf{k}=(0,0,1)$.

The standard basis vectors in $\mathbb{R}^{n}$ are $\mathbf{e}_{1}=(1,0, \ldots, 0), \mathbf{e}_{2}=(0,1,0, \ldots, 0), \ldots$, $\mathbf{e}_{n}=(0, \ldots, 0,1)$.

## The Dot Product

Let $\mathbf{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\mathbf{b}=\left(b_{1}, \ldots, b_{n}\right)$ be two vectors in $\mathbb{R}^{n}$. The dot product of a and $b$ is

$$
\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a 2 b_{2}+\ldots+a_{n} b_{n}
$$

When $n=3, \mathbf{a}=\left(a_{1}, a_{2}, a_{3}\right)$ and $\mathbf{b}=\left(b_{1}, b_{2}, b_{3}\right)$ and $\mathbf{a} \cdot \mathbf{b}=a_{1} b_{1}+a_{2} b_{2}+c_{1} c_{2}$.

## Length, Angle and Projection

The length of a vector is $\|\mathbf{a}\|=\sqrt{\mathbf{a} \cdot \mathbf{a}}$

The angle between two vectors $\mathbf{a}$ and $\mathbf{b}$ is $\theta=\cos ^{-1}\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\|\mathbf{a}\|\|\mathbf{b}\|}\right)$.

The projection of vector $b$ onto $a$ is $\operatorname{proj}_{\mathbf{a}} \mathbf{b}=\left(\frac{\mathbf{a} \cdot \mathbf{b}}{\mathbf{a} \cdot \mathbf{a}}\right) \mathbf{a}$
$\frac{\mathrm{a} \cdot \mathbf{b}}{\|\mathbf{a}\|}$ is called the scalar projection.

## The Cross Product for vectors in $\mathbb{R}^{3}$

For two vectors $\mathbf{a}$ and $\mathbf{b}$ in $\mathbb{R}^{3}$ then the cross product of $\mathbf{a}$ and $\mathbf{b}$ is the vector $\mathbf{a} \times \mathbf{b}$ such that:

- The length is $\|\mathbf{a} \times \mathbf{b}\|=\|\mathbf{a}\|\|\mathbf{b}\| \sin \theta$.
- The direction is determined by extending the fingers of your right hand along the vector a and curling them towards the vector $\mathbf{b}$, the thumb points in the direction of $\mathbf{a} \times \mathbf{b}$

Note: If $\mathbf{a}$ is parallel to $\mathbf{b}$, then $\mathbf{a} \times \mathbf{b}=\mathbf{0}$.

## Determinants

Recall that a matrix is an array of numbers (in our case of real numbers).

The determinant of a $2 \times 2$ matrix
$A=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$ is $\operatorname{det}(A)=|A|=a d-b c$.
The determinant of a $3 \times 3$ matrix
$A=\left(\begin{array}{lll}a & b & c \\ d & e & f \\ g & h & i\end{array}\right)$ is
$\operatorname{det}(A)=|A|=a e i+b f g+c d h-c e g-a f h-b d i$.

## Equation of a plane

A plane in $\mathbb{R}^{3}$ is determined by a point in the plane $P_{0}\left(x_{0}, y_{0}, z_{0}\right)$ and a vector $\mathbf{n}=$ ( $A, B, C$ ) that is perpendicular (normal) to the plane.

$$
\begin{aligned}
\mathbf{n} \cdot \overrightarrow{P_{0} P} & =(A, B, C) \cdot\left(x-x_{0}, y-y_{0}, z-z_{0}\right) \\
& =A\left(x-x_{0}\right)+B\left(y-y_{0}\right)+C\left(z-z_{0}\right)=0
\end{aligned}
$$

## Operations on Matrices

An $m \times n$ matrix is an array of real numbers with $m$ rows and $n$ columns.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right)=\left(a_{i j}\right)
$$

The sum of two $m \times n$ matrices $A$ and $B$ is the $m \times n$ matrix $C$ obtained by adding the corresponding entries in $A$ and in $B$, that is $C=A+B=\left(a_{i j}+b_{i j}\right)$.

## Matrix Multiplication

If $A$ is an $m \times n$ matrix and $B$ is an $n \times p$ matrix then the product $A B$ is the matrix where the $i j$-th entry is obtained by taking the dot product of the $i$-th row of $A$ with the $j$-th column of $B$.

NOTE: In order to define the product of $A$ and $B$ we require that the number of columns of $A$ be equal to the number or rows of $B$. Otherwise, the product is undefined.

