(1) Evaluate the integral $\iint_{D} \sqrt{x+2 y} \sin (y-2 x) d x d y$, where D is the region bounded by the four lines $y=2 x, y=2 x+\frac{\pi}{2}, x+2 y=1$ and $x+2 y=9$.
(2) Consider the surface that is the part of the paraboloid $z=x^{2}+y^{2}+5$ with $x \geq 0$ and $y \geq 0$, located between the planes $z=0$ and $z=9$. Evaluate the scalar surface integral $\iint \sqrt{1+4 x^{2}+4 y^{2}} d S$ over this surface.
(3) Find the outward flux of the vector field $\mathbf{F}(x, y, z)=\left(3 x z^{2}, y,-z^{3}\right)$ across the surface of the solid in the first octant that is bounded by the surface $x^{2}+4 y^{2}=16$ and the planes $y=2 z, x=0$, and $z=0$.
(4) Find the area of the part of the graph of the function $f(x, y)=x y$ that is outside the cylinder $x^{2}+y^{2}=1$ and inside $x^{2}+y^{2}=9$.
(5) Find the centroid of the region $\left\{(x, y): x^{2}+y^{2} \leq 1, x \geq 0, y \geq 0\right\}$ shaped like one fourth of a disk.
(6) Find the area of the region enclosed by the curve $\mathbf{x}(t)=\left(t^{2}, \frac{t^{3}}{3}-t\right),-\sqrt{3} \leq t \leq \sqrt{3}$.
(7) The force $\mathbf{F}(x, y)=\left(y \cos x-y^{3}, \sin x-3 x y^{2}\right)$ acts on a particle as it moves from the point $(0,0)$ to the point $(1,1)$, first along the horizontal line segment from $(0,0)$ to $(1,0)$, and then along the vertical line segment from $(1,0)$ to $(1,1)$. Find the work done.
(8) Let C be the curve in the $x y$-plane consisting of the four sides of the square $\{(x, y)$: $|x| \leq 1,|y| \leq 1\}$ oriented clockwise. Compute $\oint_{C}\left(y^{2}+z^{2}\right) d x+\left(x^{2}+y^{2}\right) d y+\left(x^{2}+y^{2}\right) d z$.

