12. Compute $\oint_{C} y d x+x z d y+x^{2} d z$ where C is the boundary (oriented counterclockwise as viewed from the point $(0,0,8)$) of the portion of the plane $x+y+z=1$ in the first octant.
13. Verify Stoke's theorem for the vector field $\mathbf{F}=(2 z, 3 x, 5 y)$ and the portion of the paraboloid $z=4-x^{2}-y^{2}$ with $z \geq 0$, oriented by upward pointing normal vectors.
14. Let $\mathbf{F}=\left(x z-y, y z, x^{2}+y^{2}\right)$. Compute $\oint_{C} \mathbf{F} \cdot d \mathbf{s}$ where C is the curve of intersection of the cylinder $x^{2}+y^{2}=1$ with the graph of $z=x^{2}-y^{2}$. Assume that C is oriented clockwise as viewed from the point $(0,0,10)$.
15. Let D be a region in \mathbf{R}^{3} with boundary a closed surface S. Show that the flux of the vector field $\mathbf{F}=(x, y, z)$ outward through S is the volume of D times some constant. What is the value of the constant?
16. Find the outward flux of $\mathbf{F}=\left(x^{2}, y^{2}, z^{2}\right)$ across the boundary of the cylindrical shell $1 \leq x^{2}+y^{2} \leq 4,0 \leq z \leq 2$.
17. If fluid flow is given by the vector field $F(x, y, z)=(x, 0,0)$ (in meters per second), how many cubic meters of fluid per second are crossing the upper half of the ellipsoid

$$
\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}+\frac{z^{2}}{c^{2}}=1, \quad z \geq 0
$$

with upward normal orientation. For the parametrization of an ellipsoid, see p. 428, number 8.
18. Let S be a surface with boundary curve C. Suppose the vector field F restricted to C is perpendicular to C. Explain why

$$
\iint_{S} \operatorname{curl} F \cdot \mathbf{n}=0,
$$

for either orientation of the surface S.

