- 1. A lumber jack cuts a wedge out of a cylindrical tree of radius 2 feet by making two saw cuts to the tree's center, one horizontally and one at an angle of $\theta = \pi/6$ above the horizontal. Compute the volume of the wedge removed. Hint: Vertical slices are triangles.
- 2. Consider the solid that lies above the square $R = [0, 2] \times [0, 2]$ in the *xy*-plane, and below the elliptic paraboloid $z = 36 x^2 3y^2$.
 - (a) Estimate the volume of the solid by dividing R into four equal squares with the lower left-hand corners of the squares as the sample points.
 - (b) Estimate the volume by dividing R into four equal squares with the upper righthand corners as sample points.
 - (c) What is the average of the answers from parts (a) and (b)?
 - (d) Using iterated integrals, compute the exact volume of the solid.
- 3. Find the volume of the region inside the sphere $x^2 + y^2 + z^2 = 25$ and above the plane z = 3.
- 4. Redo problem 16 on page 319 by changing to the variables u = xy and $v = \frac{y}{x}$.
- 5. Find the centroid of the portion of the ball $\rho \leq 1$ in the first octant.
- 6. Evaluate $\oint_c (-x^2y + \cos x^2) dx + xy^2 dy$, where *C* is the boundary of the region enclosed by the circles $x^2 + y^2 = 4$ and $x^2 + y^2 = 16$. The outer circle of the boundary is oriented counterclockwise, the inner clockwise.
- 7. Calculate the outward flux of the vector field $\mathbf{F}(x, y) = (x, y^2)$ across the square S bounded by the lines $x = \pm 1$ and $y = \pm 1$. That is, compute $\oint_{\partial S} \mathbf{F} \cdot \mathbf{n} \, ds$, where **n** is

the outward pointing unit normal and ∂S is suitably oriented.

- 8. Find the counterclockwise circulation of the vector field $\mathbf{F} = (xy, y^2)$ around and the outward flux of \mathbf{F} across the boundary of the region enclosed by the parabola $y = x^2$ and the line y = x. That is, compute the line integral of \mathbf{F} around the boundary (oriented counterclockwise) of the region as well as the outward flux of \mathbf{F} across the boundary.
- 9. Evaluate $\int_c (2xy^3 y^2 \cos x) dx + (1 2y \sin x + 3x^2y^2) dy$, where C is the portion of the parabola $x = \frac{\pi}{2}y^2$ from (0,0) to $(\frac{\pi}{2},1)$.
- 10. Let y = f(x) be a function which is defined on the interval [a, b] and satisfies $f(x) \ge 0$ for all x in [a, b]. Parametrize the surface obtained by rotating the graph of f about the x-axis. Write the integral which gives the area of this surface in as simple a form as possible.
- 11. Let S be a surface in \mathbb{R}^3 that is actually a subset D of the xy-plane. Show that the integral of a scalar function f over S reduces to the double integral of f over D. What does the surface integral of a vector field $\mathbf{F}(x, y, z) = (f(x, y, z), g(x, y, z), h(x, y, z))$ over S become?